140 likes | 241 Views
AP STATISTICS. Section 6.3. General Probability Rules. What We Already Know. What We Already Know Cont…. Events that are not Disjoint. Example – Prosperity and Education.
E N D
AP STATISTICS Section 6.3 General Probability Rules
Example – Prosperity and Education • Call a household prosperous if its income exceeds $100,000. Call the household educated if the householder completed college. Select an American household at random, and let A be the event that the selected household is prosperous and B the event that it is educated. According to the Census Bureau, P(A) = 0.134, P(B) = 0.254, and the joint probability that a household is both prosperous and educated is P(A and B) = 0.080. • What is the probability P(A or B) that the household selected is either prosperous or educated? • P(A or B) = P(A) + P(B) – P(A and B) = 0.134 + 0.254 – 0.080 = 0.308
Venn Diagram – Prosperity and Education • Draw a Venn diagram that shows the relation between events A and B. Indicate each of the events listed below on your diagram and use the information from the previous problem to calculate the probability of each event. Finally, describe in words what each event is. • A and B • A and Bc • Ac and B • Ac and Bc
Solution • Venn Diagram
Solution Cont… • Household is both prosperous and educated; P(A and B) = 0.080 • Household is prosperous but not educated; P(A and Bc) = P(A) – P(A and B) = 0.134 – 0.080 = 0.054 • Household is not prosperous but is educated; P(Ac and B) = P(B) – P(A and B) = 0.254 – 0.080 = 0.174 • Household is neither prosperous nor educated; P(Ac and Bc) = 1 – 0.308 = 0.692
Conditional Probability • The probability we assign to an event can change if we know that some other event has occurred. • Slim is a professional poker player. He is dealt a hand of four cards. Find the probability that he gets an ace. P(ace) = • Find the conditional probability that slim getsanother ace given he has an ace already in his hand. P(ace | 1 ace in 4 visible cards) =
Conditional Probability Cont… The notation P(B|A) is a conditional probability and means the probability of B given that A has occurred.
Example – Municipal Waste Use the information shown in the table to find each probability. P(Recycled) P(Paper) P(Recycled and Paper)
Solution • P(Recycled) = 45/206.9 = 0.22 • P(Paper) = 77.8/206.9 = 0.38 • P(Recycled and Paper) = 26.5/206.9 = 0.13
Conditional Probability Rule • Try: • P(Paper | Recycled) • P(Recycled | Aluminum) • P(Aluminum | Recycled)
Conditional Probability with Tree Diagrams • Only 5% of male high school basketball, baseball, and football players go on to play at the college level. Of these, only 1.7% enter major league professional sports. Sometimes gifted athletes are able to skip college and play professionally right out of high school, but this only occurs about 0.01% of the time. • P(high school athlete goes pro) • P(pro athlete played at the college level) • P(pro athlete didn’t play at the college level)