50 likes | 66 Views
Disk physics. E. Chiang UC Berkeley Astronomy. TW Hydra Face-on disk d = 56 ± 7 pc. 200 AU. Imaging protoplanetary disks (T Tauri, Herbig Ae). Micron wavelength sensitive to: Surface layers Holes. TW Hyd. Surface layer geometry flared (SB r -2 ) flat (SB r -3 )
E N D
Disk physics E. Chiang UC Berkeley Astronomy TW Hydra Face-on disk d = 56 ± 7 pc 200 AU
Imaging protoplanetary disks (T Tauri, Herbig Ae) • Micron wavelength sensitive to: • Surface layers • Holes TW Hyd • Surface layer geometry • flared(SB r-2) • flat (SB r-3) • Central holes • ri 4 AU (0.07 ) • (scalloped, “mind-blowing” • edges?) • Grain sizes? • (a 1.53 m for HK Tau B)
Mid-IR scattered light image of HK Tau B disk McCabe, Duchêne, & Ghez 2003 = 11.8 m Scattering asymmetry parameter g = 0.15 – 0.83 a = 1.5 – 3 m grains in disk surface layers
Frozen Jupiters / brown dwarfs formed by gravitational instability in distant massive disks For collapse: QToomre ~ 1; tcool < torb tcool ~ torb tcool > torb tcool ~ torb 100 AU T 1 [ ( + —) tcool—— r-1,-2 if » 1 Favors large distances T4 cs torb r3/2 QToomre~ r-0.2,-1 G (Difficulty of core-instability models: tform-core > tevap)
Imaging Debris Disks ( « 1) • Addresses “clean-up problem” • (Goldreich et al. 2004, ARAA) 50% planets original 50% small bodies (< km) How to eliminate? • Complementary to • SIRTF SEDs. • Modelling goal: dust (r,t) primordial N • dust small bodies • Theory still required a visible collisional