240 likes | 420 Views
What’s Next?. Plasmonic Imaging: "A New Lens into the Nano-World” The Mantra: Plasmon wave imaging: Optical frequencies, but with X-ray wavelengths! Josh Conway Thomas Szkopek Eli Yablonovitch Xiang Zhang. light. image plane. k. k. plasmon wave. e. e. >0. >0. E. E. z. z.
E N D
What’s Next? Plasmonic Imaging: "A New Lens into the Nano-World” The Mantra: Plasmon wave imaging: Optical frequencies, but with X-ray wavelengths! Josh Conway Thomas Szkopek Eli Yablonovitch Xiang Zhang
light image plane k k plasmon wave e e >0 >0 E E z z air air 2 2 k k +++ +++ +++ - - - - - - +++ - - - - - - - - - - - - x x e e <0 <0 1 1 metal metal Surface plasmons double-sided surface plasmons
Plasmon Wavelength in nm h 200 50 30 20 15 10 100 40 2.8eV 2.5 t=5nm t=20nm t=2nm t=1nm 2.0 Plasmon Energy in eV t=thickness of metal film 1.5 1.0 Optical frequencies, but with X-ray wavelengths! 0.5 k 0.1 0.2 0.3 0.4 0.5 0.6 Plasmon Wave-Vector (2/wavelength in nm)
Thin-film plasmon imaging optics double convex lens (high index) double concave lens (low index)
+ plasmon wave - + sapphire - + - + - plasmon wave grating coupler light h =2.5eV silicon photoresist
n0 n1 n2 n3 n4 n5 n6 n7 n8 n9 light light n9> n8> >n1>n0 Final Objective Lens Rayleigh Limit is /n9
+ plasmon wave - + sapphire - + - + - plasmon wave grating coupler light h =2.5eV silicon photoresist
far-field from conventional lens Plasmon imaging in a silver film in-coupling grating dimple lens out-coupling edge
light image plane plasmon wave metal film supports plasmon waves photoresist curved grating coupler plasmon lens image conventional refractive lens image plane Plasmon wave imaging: Optical frequencies, but with X-ray wavelengths! object
Plasmon wave imaging: Optical frequencies, but with X-ray wavelengths! object grating coupler slider light conventional refractive lens grating coupler plasmon wave mirror photoresist silicon image
Plasmon Wavelength in nm h 200 50 30 20 15 10 100 40 2.8eV 2.5 t=5nm t=20nm t=2nm t=1nm 2.0 Plasmon Energy in eV t=thickness of metal film 1.5 1.0 Optical frequencies, but with X-ray wavelengths! 0.5 k 0.1 0.2 0.3 0.4 0.5 0.6 Plasmon Wave-Vector (2/wavelength in nm)
Silver Film on Sapphire p 1.5 eV 400 300 2.0 eV Plasmon Wavelength in nm 200 2.5 eV 80 60 40 100 20 0 0 1 2 3 4 5 t 0 20 40 60 80 Silver Film Thickness in nm
Imaginary versus Real part of wave vector: kIm Plasmon wavelength in nm 200 50 20 15 10 5 p 0.05 1.5 eV 0.04 2.5 eV 2.0 eV 0.03 Imaginary Wave-number in rad/nm 0.02 Q ~ 20 0.01 kReal 0 0. 5 1.0 Real Wave-number rad/nm
Plasmon wave imaging: Optical frequencies, but with X-ray wavelengths! object grating coupler slider light conventional refractive lens grating coupler plasmon wave mirror photoresist silicon image
- - - + + + - - - + + + - - - +++ - - ++ - - - + + + - - - + + + - - - + + + L C
Thin capacitors can sustain very large electric fields 108Volts/cm 1Volt/Angstrom λ anti-bodies anti-gens DNA fragments RNA toxins ++++ +++ ++ I(ω) - - - - - - - - - 1 photon in a 1nm1nm1nm capacitor produces an electric field= 108 Volts/cm electric field= 1Volt/Angstrom This is enough for a giant optical nonlinearity!
capacitive bio- sensor grating out-coupler anti-bodies anti-gens DNA fragments RNA toxins grating nonlinear medium λ in-coupler plasmonic wire three terminal optical device k di-electric wave-guide
Plasmon Wavelength in nm h 10 20 50 100 100 50 20 10 4 4 Air thin Al2O3 3 Al2O3 3 Plasmon Energy in eV 2 2 1 1 0 k 0 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 -1 -0 -0 -0 -0 -0 0 0 0 0 0 1 1 Plasmon Wave-Vector (2/wavelength in nm)
Plasmon Wavelength in nm h 10 20 50 100 100 50 20 10 4 d=1nm d=2nm 3 d=5nm d=10nm d=20nm Plasmon Energy in eV 2 air Al2O3 d 1 silver 0 k -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 Plasmon Wave-Vector (2/wavelength in nm)