560 likes | 697 Views
Departamento de Física Teórica II. Universidad Complutense de Madrid. Present status of Light Flavoured Scalar Resonances. J. R. Peláez. II Spanish-Russian Congress . St. Petersburg, October 2013. Outline. 1) Scalar Mesons : motivation & perspective. 2 ) The σ or f0(500).
E N D
Departamento de Física Teórica II. Universidad Complutense de Madrid Present status of Light Flavoured ScalarResonances J. R. Peláez II Spanish-RussianCongress. St. Petersburg, October 2013
Outline 1) ScalarMesons: motivation & perspective 2) Theσor f0(500) I willfocusonprogress sincelast CD2009 orafter PDG2010 Followingtwopoints of view: 3) The f0(980) 4) Theκor K(800)and a0(980) i) PDG Consensual, conservative 5) Summary ii) My own Probablyclosertothedominant view in thecommunity workingon light scalars 6) Nature of thesestates (time permitting) 1/Ncexpansion. Reggetrajectories
I=0, J=0 exchangeveryimportantfornucleon-nucleonattraction!! Crude Sketch of NN potential: From C.N. Booth Motivation: Thef0(600)orσ, half a centuryaround Scalar-isoscalar fieldalreadyproposedby Johnson & Teller in 1955 Sooninterpretedwithin “Linear sigma model” (Gell-Mann) or Nambu JonaLasinio - likemodels, in the 60’s. InterestingalsoforCosmology: variations of fundamental constants, Anthropicconsiderations, etc…
Thelongstandingcontroversy ( situationca. 2002) Theσ, controversial sincethe 60’s. “notwellestablished” 0+ state in PDG until 1974 Removed from 1976 until 1994. Back in PDG in 1996, renamed “f0(600)” Thereason: TheσisEXTREMELY WIDE and has no “BW-resonancepeak”. Usuallyquotedbyitspole: The “kappa”: similar situationtotheσ, butwithstrangeness. Stillout of PDG “summarytables” Narrowerf0(980), a0(980) scalarswellestablishedbutnotwellunderstood. Even more states: f0(1370), f0(1500), f0(1700)
Scalar SU(3) multipletsidentification controversial Toomanyresonancesformanyyears…. Butthereisanemergingpicture + Another heavier scalar nonet: A Light scalar nonet: (800) K(1400) Non-strangeheavier!! Invertedhierarchyproblem For quark-antiquark f0(600) and f0(980) are really octet/singlet mixtures f0(980) f0 a0 Singlet f0singlet a0(980) a0(1475) f0 The light scalarcontroversy. Thetheoryside... classification + glueball f0 Enoughf0stateshavebeenobserved: f0(1370), f0(1500), f0(1700). Thewholepictureiscomplicatedby mixture betweenthem (lots of workshere)
Motivation: The role of scalars The f0’s havethevacuum quantum numbers. Relevantforspontaneous chiral symmetrybreaking. Glueballs: Featureof non-abelian QCD nature Thelightestoneexpectedwiththese quantum numbers Non ordinarymesons? Tetraquarks, molecules, mixing… SU(3) classification. Howmanymultiplets? Invertedhierarchy? Whylesser role in thesaturation of ChPT parameters? First of allitisrelevanttosettletheirexistence, mass and width
Outline 1) ScalarMesons: motivation & perspective 2) Theσor f0(500)
Theσuntil 2010: the data 1) FromN scattering Initialstatenotwelldefined, modeldependentoff-shellextrapolations (OPE, absorption, A2exchange...) Phaseshiftambiguities, etc... N N Systematicerrors of 10o !! Example:CERN-Munich 5 different analysis of same pn data !! Grayeret al. NPB (1974) 2) FromKe (“Kl4 decays”) Geneva-Saclay(77), E865 (01) Pions on-shell. Very precise, but00-11. Unfortunately….NN insensitivetodetails… needothersources Definitelynot a Breit-Wigner 2010 NA48/2 data
Theσuntil 2010: the data 3) Decaysfromheaviermesons Fermilab E791, Focus, Belle, KLOE, BES,… “Production” from J/Ψ, B- and D- mesons, and Φradiativedecays. VerygoodstatisticsClear initialstates and differentsystematicuncertainties. Strong experimental claimsforwide and light around 500 MeV “Strong” experimental claimsforwide and light around 800 MeV Veryconvincingfor PDG, but personal caveatsonparametrizationsused, whichmayaffecttheprecision and meaning of the pole parameters PDG2002: “σwellestablished” However, since1996 until 2010 stillquoted as Mass= 400-1200 MeV Width= 600-1000 MeV ?
PDG uncertaintiesca. 2010 Clear room for Improvement
Part of theproblem: Thetheory Manyoldan new studiesbasedoncrude/simple models, Strongmodeldependences Suspicion: Whatyouput in iswhatyougetout??
Example: Polesfrom sameexperiment!! PDG uncertaintiesca. 2010
Part of theproblem: Thetheory Manyoldan new studiesbasedoncrude/simple models, Strongmodeldependences Suspicion: Whatyouput in iswhatyougetout?? Even experimental analysisusing WRONG theoreticaltoolscontributetoconfusion (Breit-Wigners, isobars, K matrix, ….) Lesson: Forpolesdeep in thecomplexplane, thecorrectanalyticproperties are essential Analyticityconstraints more powerful in scattering Dispersiveformalisms are themost precise and reliable AND MODEL INDEPENDENT
The 60’s and early 70’s: Strongconstraintson amplitudes fromANALYTICITY in theform ofdispersionrelations Butpoor input onsomeparts of theintegrals and poorknowledge/understanding of subtractionconstants = amplitudes at lowenergyvalues The 80’s and early 90’s: Development of Chiral PerturbationTheory (ChPT). (Weinberg, Gasser, Leutwyler) Itistheeffectivelowenergytheory of QCD. Providesinformation/understandingonlowenergy amplitudes The 90’s and early 2000’s: Combination of Analyticity and ChPT (Truong, Dobado, Herrero, Donoghe, JRP, Gasser, Leutwyler, Bijnens, Colangelo, Caprini, Zheng, Zhou, Pennington...) The real improvement: Analyticity and Effective Lagrangians
Analyticity and Effective Lagrangians: twoapproaches Unitarized ChPT(Truong, Dobado, Herrero, JRP, Oset, Oller, Ruiz Arriola, Nieves, Meissner, …) Use ChPT amplitudes insideleftcut and subtractionconstants of dispersionrelation. Relatively simple, althoughdifferentlevels of rigour. Generatesallscalars Crossing (leftcut) approximated… so, notgoodforprecision
Why so muchworriesabout “theleftcut”? Itiswrongtothink in terms of analyticity in terms of Leftcutdueto Crossedchannels ρ σ Sincethepartial wave isanalytic ins…. Forthe sigma, theleftcut relativelyclose and relevant ρ σ
UNCERTAINTIES IN Standard ROY EQS. vs GKPY Eqs Why are GKPY Eqs. relevant? One subtraction yields better accuracy in √s > 400 MeV region Roy Eqs. GKPY Eqs, smaller uncertainty below ~ 400 MeV smaller uncertainty above ~400 MeV
Analyticity and Effective Lagrangians: twoapproaches Unitarized ChPT 90’s Truong, Dobado, Herrero, JRP, Oset, Oller, Ruiz Arriola, Nieves, Meissner,… Use ChPT amplitudes insideleftcut and subtractionconstants of dispersionrelation. Relatively simple, althoughdifferentlevels of rigour. Generatesallscalars Crossing (leftcut) approximated… , notgoodforprecision Roy-likeequations. 70’s Roy, Basdevant, Pennington, Petersen… 00’s Ananthanarayan, Caprini, Colangelo, Gasser, Leutwyler, Moussallam, DecotesGenon, Lesniak, Kaminski, JRP… Leftcutimplementedwithprecision . Use data onallwaves + highenergy . Optional: ChPT predictionsforsubtractionconstants Themost precise and modelindependent pole determinations f0(600) and κ(800) existence, mass and width firmlyestablishedwithprecision Forlong, wellknown forthe “scalarcommunity” Yettobeacknowledgedby PDG…. By 2006 very precise Roy Eq.+ChPT pole determinationCaprini,Gaser, Leutwyler
PDG uncertaintiesca. 2010 Data after2000, bothscatteringand production Dispersive- modelindependentapproaches Chiral symmetrycorrect Yettobeacknowledgedby PDG….
Somerelevant DISPERSIVE POLE Determinations (after 2009, also “according” to PDG) GKPY equations = Roy likewithonesubtraction García Martín, Kaminski, JRP, YndurainPRD83,074004 (2011) R. Garcia-Martin , R. Kaminski, JRP, J. Ruiz de Elvira, PRL107, 072001(2011). Includeslatest NA48/2 constrained data fit .Onesubtractionallows use of data only NO ChPT input butgoodagreementwithprevious Roy Eqs.+ChPTresults. Roy equationsB. Moussallam, Eur. Phys. J. C71, 1814 (2011). An S0 Wave determination up to KK thresholdwith input fromprevious Roy Eq. works Analytic K-Matrixmodel G. Mennesier et al, PLB696, 40 (2010)
Theconsistency of dispersiveapproaches, and alsowith previousresultsimplementing UNITARITY, ANALTICITY and chiral symmetryconstraintsbymanyotherpeople … (Ananthanarayan, Caprini, Bugg, Anisovich, Zhou, IshidaSurotsev, Hannah, JRP, Kaminski, Oller, Oset, Dobado, Tornqvist, Schechter, Fariborz, Saninno, Zoou, Zheng, etc….) Has ledthe PDG toneglectthoseworksnotfullfillingtheseconstraints alsorestrictingthesampletothoseconsistentwith NA48/2, Togetherwiththelatestresultsfrom heavy mesondecays Finallyquoting in the 2012 PDG edition… M=400-550 MeV Γ=400-700 MeV More than 5 times reduction in themassuncertainty and 40% reductiononthewidthuncertainty Accordingly THE NAME of theresonanceischangedto… f0(500)
DRAMMATIC AND LONG AWAITED CHANGE ON “sigma” RESONANCE @ PDG!! The f0(600) or “sigma” in PDG 1996-2010 M=400-1200 MeV Γ=500-1000 MeV Becomes f0(500) or “sigma” in PDG 2012 M=400-550 MeV Γ=400-700 MeV To my view… stilltoo conservative, but quite animprovement
Actually, in PDG 2012: “Note on scalars” And, at therisk of beingannoying…. Now I findsomewhatboldtoaveragethoseresults, particularlytheuncertainties 8. G. Colangelo, J. Gasser, and H. Leutwyler, NPB603, 125 (2001). 9. I. Caprini, G. Colangelo, and H. Leutwyler, PRL 96, 132001 (2006). 10. R. Garcia-Martin , R. Kaminski, JRP, J. Ruiz de Elvira, PRL107, 072001(2011). 11. B. Moussallam, Eur. Phys. J. C71, 1814 (2011).
Unfortunately, tokeeptheconfusion the PDG stillquotes a “Breit-Wignermass” and width… I have no words…
Outline 1) ScalarMesons: motivation & perspective 2) Theσor f0(500) 3) The f0(980)
DIP vs NO DIP inelasticityscenarios Longstandingcontroversybetweeninelasticity data sets : (Pennington, Bugg, Zou, Achasov….) Some of them prefer a “dip” structure… ... whereasothers do not GKPY Eqs. disfavorsthe non-dipsolutionGarcía Martín, Kaminski, JRP, YndurainPRD83,074004 (2011) Garcia-Martin , Kaminski, JRP, Ruiz de Elvira, PRL107, 072001(2011) Confirmationfrom Roy Eqs. B. Moussallam, Eur. Phys. J. C71, 1814 (2011)
Somerelevantrecent DISPERSIVE POLE Determinations of the f0(980) (after CD2009, also “according” to PDG) GKPY equations = Roy likewithonesubtraction García Martín, Kaminski, JRP, YndurainPRD83,074004 (2011) Garcia-Martin , Kaminski, JRP, Ruiz de Elvira, PRL107, 072001(2011) Roy equationsB. Moussallam, Eur. Phys. J. C71, 1814 (2011). Thedipsolutionfavorssomewhathighermassesslightlyabove KK threshold and reconcileswidthsfromproduction and scattering
Thus, PDG12 made a smallcorrectionforthe f0(980) mass & more conservativeuncertainties
Outline 1) ScalarMesons: motivation & perspective 2) Theσor f0(500) 3) The f0(980) 4) Theκor K(800)and a0(980) No changesonthe a0 mass and width at the PDG forthe a0(980)
Commentsontheminoradditionstothe K(800) @PDG12 Still “omitttedfromthesummarytable” since, “needsconfirmation” But, all sensible implementations of unitarity, chiral symmetry, describingthe data find a pole between 650 and 770 MeVwith a 550 MeVwidthorlarger. As forthe sigma, and themostsoundeddetermination comes from a Roy-Steinerdispersiveformalism, consistentwithUChPTDecotesGenon et al 2006 Since 2009 twoEXPERiMENTALresults are quotedfrom D decays @ BES2 Surprisingly BES2 gives a pole position of But AGAIN!! PDG goesongivingBreit-Wignerparameters!! More confusion!! Fortunately, the PDG mass and widthaverages are dominatedbythe Roy-Steinerresult
Summary For quite some time nowthe use of analyticity, unitarity, chiral symmetry, etc… to describe scattering and production data has allowedtoestablishtheexistence of light theσ and κ Thesestudies, togetherwith more reliable and precise data, haveallowedfor PRECISE determinations of light scalar pole parameters The PDG 2012 edition has FINALLY acknowledgedtheconsistency of theory and experiment and therigour and precision of thelatestresults, fixing, to a largeextent, theveryunsatisfactorycompilation of σresults Unfortunately, sometraditionalbutinadequateparametrizations, longagodiscardedbythespecialists, are stillbeingused in the PDG fortheσ and theκ I expect a more“cleaning up” in the PDG forotherscalarresonancessoon
Outline 1) ScalarMesons: motivation & perspective 2) Theσor f0(500) I willfocusonprogress sincelast CD2009 orafter PDG2010 Followingtwopoints of view: 3) The f0(980) 4) Theκor K(800)and a0(980) i) PDG Consensual, conservative 5) Summary ii) My own Probablyclosertothedominant view in thecommunity workingon light scalars 6) Nature of thesestates (time permitting)
Truong ‘89, Truong,Dobado,Herrero,’90, Dobado JRP,‘93,‘96 Unitarized ChPT: TheInverseAmplitudeMethod ρ Mass Width/2 K*(890) (770) =f0(600) Very simple systematic extension to higher orders Generates Poles of Resonances: f0(600) or “”, ρ(770), (800), K*(892), 00 Simultaneously: Unitarity+Chiral expansion =f0(600) From 1/Nc dependence of ChPT parameters 11 UChPTpredicts 1/Nc behavior of resonance poles
The 1/Ncexpansion and Unitarized ChPT The(770) The(=770MeV) MN/M3 MN/M3 MN/M3 N/3 N/3 N/3 Nc Nc Whataboutscalars ? Nc Similarlyforthe K*(892) Similar conclusionsforthe K(800), f0(980) and a0(980)
Uncertainty in one-loopcalculation ChPT+IAMisfullyrenormalized and scaleindependent, butthereisanuncertaintyonwhatscaletoappytheNcbehaviortothe ChPT constants Withoutspoilingthe rho q-qbarbehavior: 1) ROBUST The sigma pole cannotbemadetobehave as a q-qbarnearNc=3 Dominant behavior also found in other variants of unitarized ChPT (Uehara,Zheng,Oller, Nieves...) 2) Uncertain NcbehaviorfarfromNc>>3 Subdominantcomponentsmay emerge
Intermediate summary Modelindependentapproach: (observables withenhanced 1/Ncsuppression) • Vectors as ordinarymesons, agreewithleading 1/Ncbehavior • Strongnaturalityproblemfor light scalars as ordinarymesons Unitarized ChPT+leading 1/Nc: • ROBUST: Vectorsbehave as ordinarymesons, Light scalarscannotbemadetobehavepredominantly as ordinarymesonsclosetoNc=3. • HINTS: Subdominant q-qbarcomponentaround 1-1.5 GeV arises at largerNc.Butlargeuncertainties. Suportedbyotherapproches, butstill, large UNCERTAINTIES onpossiblesubdominant q-qbarcomponent. (Nieves, Pich, Arriola, C.D Roberts…) We look forfurtherarguments….
ReggeTheory and Chew-FrautschiPlots Anotherfeature of QCD as a confiningtheory isthathadrons are classified in almost linear (J,M2) trajectories Roughly, this can beexplainedby a quark-antiquark pairconfined at theends of a string-like/flux-tubeconfiguration. Thetrajectories can alsobeunderstood fromtheanalyticextensiontothecomplex angular momentumplane (ReggeTheory) However, light scalars, and particularlythe f0(500) do notfit in. Anisovich-Anisovich-Sarantsev-PhysRevD.62.051502 4
Reggetrajectoryfrom a single pole Londergan, Nebreda, JRP, Szczepaniak , In progress Anelasticpartial wave amplitudenear a Regge pole reads Whereαisthe “trajectory” and βthe “residue” Iftheamplitudeisdominatedbythe pole, unitarity implies: Imposingthethresholdbehavior q2l and otherconstraints fromtheanalyticextensiontothecomplexplane, This leads to a set of dispersionrelationsconstrainingthetrajectory and residue Thescalar case reqires a smallmodificationtoincludethe Adler zero
Reggetrajectoryfrom a single pole Londergan, Nebreda, JRP, Szczepaniak , In progress Whenweiterativelysolvethepreviousequations fittingonlythe pole and residue of theρ(770) obtainedfromthemodelindependent GKPY approach… Werecover a fairrepresentation of theamplitude Butwealsoobtain a “prediction” fortheRegge rho trajectory, whichis: 1) Almost real 2) Almost linear: α(s) ~α0+α’ s 3) Theinterceptα0= 0.53 4) Theslopeα’ = 0.895 GeV-2 Remarkablyconsistentwiththeliterature, takingintoaccountourapproximations
Reggetrajectoryfrom a single pole Londergan, Nebreda, JRP, Szczepaniak , In progress Sincetheapproachworksremarkablywellforthe rho, werepeat itforthe f0(500). Wefitthe pole obtainedfrom GKPY to a single pole-Reggelikeamplitude Againwerecover a fairrepresentation of theamplitude, evenbetterthanforthe rho And weobtain a “prediction” fortheRegge sigma trajectory, whichis: 1) NOT real 2) NOT evidently linear 3) Theinterceptα0= -0.08 4) Theslopeα’ = 0.004 GeV-2 Twoorders of magnitudeflatterthanotherhadrons The sigma does NOT fitthe usual classification
Reggetrajectoryfrom a single pole Londergan, Nebreda, JRP, Szczepaniak , In progress Comparison of sigma vs. Rho trajectories Twoorders of magnitudeflatterthanotherhadrons The sigma does NOT fitthe usual classification
The light scalarcontroversy. Thetheoryside... NON-ORDINARY nature Tetraquarks(Jaffe ’77) .Solvestheinvertedhierarchyproblem (issueswith chiral symmerty and excess of states), PROBLEM WITH SEMILOCAL DUALITY Modified quark-antiquark modelswithmesoninteractions Van Beveren, Rupp Molecules(Achasov, Jülich-Bonn, Oller-Oset) are also NON-ORDINARY,… Mayalsohaveproblemwithsemi-local duality Somepeopleclaim/claimedsome of these did/do notexist , liketheκ(800) the f0(1370), etc… (Pennington, Minkowski, Ochs, Narison… σ as glueball supporters in general) By ORDINARY we mean quark-antiquark, butthere are otherpossibilities
Final Result: Analyticcontinuationtothecomplexplane f0(980) f0(600) Roy Eqs. Pole: Residue: GKPY Eqs. pole: Residue: Wealsoobtaintheρ pole:
Onthe use of BW and otherstuff • Thus, ifyouinsist in usingwhateveryouwanttofityour data…. • REFRAINfrommakingPhysicalor POLE interpretationsunlessyou are sureyourparametrizationsmakesense in thecomplexplane (analyticity), are unitary, etc… • Itmightbeusefultomakeitpublic and availableforothersbecauseyouwanttoparametrizethe data somehow so thatanybody can use it, compare toit, etc… Fine… but.
A precise scatteringanalysiscan helpdeterminingthe • and f0(980) parametersand isusefulforForm • Factorscontainingseveral pions in the final state A dispersiveapproachtoπ π scattering: Motivation Thedispersiveapproachismodelindependent. Justanalyticity and crossingproperties Determine theamplitude at a givenenergyeveniftherewere no data precisely at thatenergy. Relate different processes Increase the precision The actual parametrization of the data isirrelevantonce insideintegrals.
Structure of calculation: Example Roy and GKPY Eqs. Both are coupledchannelequationsfortheinfinitepartialwaves: I=isospin 0,1,2 , l =angular momentum0,1,2,3…. DRIVING TERMS (truncation) Higher waves and High energy SUBTRACTION TERMS (polynomials) KERNEL TERMS known Partial wave on real axis ROY: 2nd order More energy suppressed Very small GKPY: 1st order Less energy suppressed small Similar Procedure forFDRs “OUT” “IN (from our data parametrizations)” =?
S0 wave below 850 MeV R. Garcia Martin, JR.Pelaez and F.J. Ynduráin PRD74:014001,2006 Conformal expansion, 4 terms are enough. First, Adler zero at m2/2 Average of N->N data sets withenlargederrors, at 870- 970 MeV, wherethey are consistentwithin 10oto 15o error. We use data on Kl4 includingthe NEWEST: NA48/2 results Getrid of K → 2 Isospin correctionsfrom GassertoNA48/2 ItdoesNOT HAVE A BREIT-WIGNER SHAPE Tinyuncertainties dueto NA48/2 data
Lesson to learn: Despite using Very reasonable parametrizations with lots of nice properties, yielding nice looking fits to data… They are at odds with FIRST PRINCIPLES crossing, causality (analyticity)… And of course, toextrapolatetothecomplexplane ANLYTICITY isessential
DIP vs NO DIP inelasticity scenarios GKPY S0 waved2 Now we find large differences in CFD UFD 850MeV< e <1050MeV 992MeV< e <1100MeV Dip 1.02 No dip 3.49 Other waves worse and data on phase NOT described Dip 6.15 No dip 23.68 Improvement possible? No dip (enlarged errors) 1.66 But becomes the “Dip” solution No dip (forced) 2.06