E N D
1. 1
2. 2 6. Linear Filtering of a Random Signal Linear System
Our goal is to study the output process statistics in terms of the input process statistics and the system function.
3. 3 Deterministic System
4. 4 Memoryless Systems
5. 5 Linear Time-Invariant Systems
6. 6 Linear Filtering of a Random Signal
7. 7 Theorem 6.1
8. 8 Theorem 6.2
9. 9 Theorem 6.2 (Cont’d)
10. 10 Example 6.1
11. 11 Example 6.2
12. 12 Theorem 6.3
13. 13 Example 6.3
14. 14 Theorem 6.4
15. 15 Example 6.4
16. 16 Theorem 6.5
17. 17 Example 6.5
18. 18 Example 6.6
19. 19 Example 6.7
20. 20 Example 6.8
21. 21 Theorem 6.6
22. 22 Example 6.9
23. 23 Example 6.10
24. 24
25. 25 7. Power Spectrum Analysis
26. 26 Theorem 7.1
27. 27 Theorem 7.2
28. 28 Example 7.1
29. 29 Example 7.2
30. 30 Discrete-Time Fourier Transform (DTFT)
31. 31 Power Spectral Density of a Random Sequence
32. 32 Theorem 7.4
33. 33 Example 7.4
34. 34 Example 7.5
35. 35 Cross Spectral Density
36. 36 Example 7.6
37. 37 Example 7.7
38. 38 Frequency Domain Filter Relationships
39. 39 Theorem 7.5
40. 40 Example 7.8
41. 41 Example 7.9
42. 42 Example 7.10
43. 43 Theorem 7.6
44. 44 I/O Correlation and Spectral Density Functions
45. 45
46. 46 8. Linear Estimation and Prediction Filters
47. 47 Linear Prediction Filters
48. 48 Theorem 8.1
49. 49 Example 8.1
50. 50 Theorem 8.2
51. 51 Linear Estimation Filters
52. 52 Theorem 8.3
53. 53 Example 8.2
54. 54
55. 55 9. Mean Square Estimation
56. 56 Theorem 9.1:Linear Estimation
57. 57 Example 9.1