300 likes | 469 Views
ECE 2317 Applied Electricity and Magnetism. Prof. D. Wilton ECE Dept. Notes 6. Notes prepared by the EM group, University of Houston. z. P ( x,y,z ). r. y. x. Review of Coordinate Systems. An understanding of coordinate systems is important for doing EM calculations. z.
E N D
ECE 2317 Applied Electricity and Magnetism Prof. D. Wilton ECE Dept. Notes 6 Notes prepared by the EM group, University of Houston.
z P (x,y,z) r y x Review of Coordinate Systems An understanding of coordinate systems is important for doing EM calculations.
z P (x,y,z) r y x Rectangular Short hand: Some books: dy dS = dxdy dx dz dS = dxdz dS = dydz
z B C dr r A r+dr y x Rectangular (cont.) Path Integral (need dr) Note on notation: dlis often used instead of dr
y z x P (, , z) z . y x Cylindrical .
z . y y x Note: and depend on (x, y) x Cylindrical (cont.) Unit Vectors Point in the direction of increasing coordinate
y x Cylindrical (cont.) Expressions for unit vectors Assume Then we have: Similarly, Hence
Cylindrical (cont.) Summary of Results
dS = d d z dz dS = d dz d d dS = d dz y x Cylindrical (cont.) Differentials Note: dS may be in three different forms
d y y y d z d dz x x y x Cylindrical (cont.) Path Integrals First consider differential changes along any of the three coordinate directions:
C y dr x Cylindrical (cont.) In general:
z z P (r, , ) P (r, , ) . . z r r y y x x Note: 0 < < Note: = r sin Spherical
z P (r, , ) . z r y Note: = r sin Spherical (cont.)
z . y x Note: ,and depend on (x, y, z) Spherical (cont.) Unit Vectors Point in the direction of increasing coordinate
z . y x Spherical (cont.) Transformation of Unit Vectors
Spherical (cont.) Differentials z r sin d r d d dS = r2 sin d d dr d y Note: dS may be in three different forms (only one is shown). The other two are: x dS = rdr d dS = rsin dr d
dr z z d dr r y y x x Spherical (cont.) Path Integrals z dr r d y x
Path Integral Parameterization C Typically, t is time, arc length, or angle
Example P1 (4, 60, 1) [m] P2 (3, 180, -1) [m] (cylindrical coordinates) Given: Find d = distance between points d = 6.403 [m]
z y x Example Derive Let
z ( / 2) - y L x x Example (cont.) Hence
Example Derive Let
z z y y x x Example (cont.) z y x Result:
Example Given: v = -3x10-8 (cos2 / r4) [C/m3] , 2 < r < 5 [m] Find Q z Solution: a y b x a = 2 [m], b = 5 [m]
Example (cont.) Q = -5.655x10-8 [C]
Find Q Example
z E (x,y,z) . (0,1,0) y . B C (1,0,0) A x Example Find VAB y 1 x 1 VAB = -7/6[V]
y B Find VAB x A 3 [m] C Example Scalar integrand; most conveniently performed in cylindrical coords.
Example (cont.) VAB = 9/2[V]