100 likes | 244 Views
“ 投入产出法案例”“边际分析法案例”. 边际分析四大原理 . 和例题计算: 设 F(X) =AX + BX2 - CX3 PX , PY 已知。 EP=(△Y/Y) / (△X/X) = (△Y/△X) / (Y/X)= MP / AP. “ 投入产出法案例”“边际分析法案例”. 一,生产三阶段原理:
E N D
“投入产出法案例”“边际分析法案例” • 边际分析四大原理.和例题计算: • 设 F(X) =AX + BX2 - CX3 PX,PY已知。EP=(△Y/Y) / (△X/X) = (△Y/△X) / (Y/X)= MP / AP
“投入产出法案例”“边际分析法案例” • 一,生产三阶段原理: • 第一阶段EP>1,即MP>AP,每增加一单位可变资源X引起MP变化大于AP,增加可变资源X投入,产量Y 可继续增加.,是生产不合理阶段。通过 MP=AP MP=A + 2BX -3CX2 =AP = A + BX-CX2 X2 = B/2C • 可求出此阶段分界点(位于AP的最高点
其中在MP的最高点处分界,随可变资源X的增加,产量Y增加的变化率先增后减。其中在MP的最高点处分界,随可变资源X的增加,产量Y增加的变化率先增后减。 • 该点可通过 D(MP)= 0 = D(D(F(X))) 即 2B-6CX= 0 X1 = B/3C
第二阶段:即X2<X<X3阶段,0<EP<1,MP和AP都在下降阶段.,为生产合理阶段第二阶段:即X2<X<X3阶段,0<EP<1,MP和AP都在下降阶段.,为生产合理阶段 • 当 D (Y) =MP =0 = A +2BX -3CX2 X=X3 = (-2B+(4B2+12AC)½)/ (-6C) 时产量Y 达到最大.
第三阶段X > X3 , AP,MP < 0 , 总产量在下降 , 为生产不合理阶段 。同时要求X1< X2 < X3 且X = X3 时,Y = MAX必须大于零。
例题:已知农业生产中可变要素X与产量Y的生产函数关系:Y= -X3 + 2X2 - 7X / 12 • 求:1)生产合理阶段的X的投入量范围? • 2) 从何时起,随着可变资源X投入量的增加,产量虽然增加,但增加的速度却降低了? • 3)PX= 5 ,PY= 12 使纯收入最大的资源X的最佳投入量?
解: 1) MP = -3X2 + 4X-7/12=0 X1=1/6时,Y<0 ,舍去X2 = 7/6时,产量最大为49/108. • 2) AP = MP = 2X2 = 2X X1=0 (舍去) , X2 = 1当 1< X < 7/6 时为生产合理阶段; • 3)D(MP)=0, D(-3X2 + 4X-7/12)=0当X= 2/3 时 , MP从最大变成最小。 • 4)MP = PX / PY = 5/12=-3X2 + 4X-7/12当 X = 1 时,纯收入最大为0 ,舍去。X = 1/3 ,纯收入为最大5/324
二.纯收入最大原理:MC = MR 时,纯收入最大,---------因为MC > MR 时,要降低成本;而MC < MR时,收益还有可能增加;-----所以,只有MC = MR 时,纯收入最大。MC = PX* △X; MR = PY *△Y MC = MR (△Y / △X)= PX / PY = MP = F‘(X)例题见教材P259
三.资源边际费用均等原理:多种资源投入生产一种或多种产品的最佳资源配比,目的是使资源组合费用最小,条件是各种资源的边际费用相等。MC1 = PX1*△X1 MC2 = PX2*△X2 MC1 = MC2 所以 △X2 /△X1 = PX1 / PX2 ??要求:X1与X2必须是有同功异价的可替代的两种资源。(即Y值恒定)例题见教材P260
四,资源边际收益均等原理:有限制资源生产多种产品的最佳收入组合效果,条件是几种产品的边际收益均等,目的是产品收入组合最大。(此原理可应用于多种作物的混种,套种和间种生产量的安排)例题见教材P260MR1 = MR2 MR1 = PY1*△Y1 MR2 = PY2*△Y2所以 △Y1 / △Y2 = PY2 / PY1实践中应用被产业组织理论应用者以企业多年生产经营数据被验证,这四大原理对生产中要素合理配置有现实意义