1 / 13

Accessing Meteorological Data Using Ontology

Takuji Kiura Atsushi Yamakawa Xin Wen Yu Seishi Ninomiya NARC, NARO, Japan. Accessing Meteorological Data Using Ontology. Client APP. アプリケーション. アプリケーション. アプリケーション. アプリケーション. Weather DB. 気象. 気象. 気象. W. DB. DB. DB. DB. Client APP. アプリケーション. アプリケーション. アプリケーション. アプリケーション. 気象.

Download Presentation

Accessing Meteorological Data Using Ontology

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Takuji Kiura Atsushi Yamakawa Xin Wen Yu Seishi Ninomiya NARC, NARO, Japan Accessing Meteorological DataUsing Ontology

  2. Client APP アプリケーション アプリケーション アプリケーション アプリケーション Weather DB 気象 気象 気象 W DB DB DB DB Client APP アプリケーション アプリケーション アプリケーション アプリケーション 気象 気象 気象 気象 DB DB DB DB Weather DB MetBroker MetBroker MetBroker MetBroker MetBroker Client APP アプリケーション アプリケーション アプリケーション アプリケーション Weather DB 気象 気象 気象 気象 DB DB DB DB MetBroker • WebService for accessing Meteorological Data • 20000 Observation Point

  3. Agricultural applications and databases Agricultural applications need several different types of data set Databases needed for the applications are usually maintained and managed by different organizations and are located in different places Those databases are heterogeneous in access method, data formats, available items, time resolution etc.

  4. Example of Heterogeneity of Metrological Database • Item • Air Temperature, Wind, Rain, Radiation, etc. • Sub Item • Rain Amount, Rain Intensity, Rainy Days, etc. • Time Resolution • Sub Hourly, Hourly, Daily, Monthly, etc. • Summarization • Mean, Maximum, Minimum, Total, etc. • Equipment

  5. Solution by Ontology Metadata database Decision-Making Support Services Operational Products Simulation Models Detailed Digital Forecast Item Definition OWL Station metadata RDF 2. Request 3. Request metadata 1. Register Meteorological databases DB Wrapper Inference Engine Broker DB Wrapper DB Wrapper 4. Request data

  6. Sample Basic Vocabulary <owl:Class rdf:ID="DailyMaxAirTemperature"> <rdfs:subClassOf rdf:resource="#MaxAirTemperature"/> <rdfs:subClassOf> <owl:Restriction> <owl:allValuesFrom> <owl:Class rdf:about="#DailyMaximum"/> </owl:allValuesFrom> <owl:onProperty> <owl:ObjectProperty rdf:about="#summaryKind"/> </owl:onProperty> </owl:Restriction> </rdfs:subClassOf> </owl:Class> <owl:Class rdf:about="#DailyMaximum"> <rdfs:subClassOf rdf:resource="#Maximum"/> <rdfs:subClassOf> <owl:Restriction> <owl:allValuesFrom rdf:resource="#Daily"/> <owl:onProperty> <owl:ObjectProperty rdf:about="#duration"/> </owl:onProperty> </owl:Restriction> </rdfs:subClassOf> </owl:Class> “”DailyMaxAirTemperature” is a subclass of “MaxAirTemperature” “”DailyMaxAirTemperature” is recognized as maximum and daily data Sample file: http://www.agmodel.org/MetBroker.owl

  7. Sample Item Definition “ame_day.temp_max” is recognized as maximum and daily data based on every 10 minutes data Local item name <met:DailyMaxAirTemperature rdf:ID="ame_day.temp_max"> <met:summaryKind rdf:resource= "http://www.agmodel.org/MetBroker.owl#DailyMaximumOfSampleEvery10Minutes"/> </met:DailyMaxAirTemperature> <met:HourlySampleAirTemperature rdf:ID="ame_time.temperature"> <met:summaryKind rdf:resource= "http://www.agmodel.org/MetBroker.owl#SampleOnTheHour"/> </met:HourlySampleAirTemperature> A sample file is available on http://www.agmodel.org/Aclima.owl

  8. Sample Station Metadata <met:MetStation rdf:ID="01"> <rdfs:label xml:lang=“en"> Ag. Res. Inst. Representative Observation Station </rdfs:label> <met:alt>64.0</met:alt> <met:log>139.2874298095703</met:log> <met:lat>35.34185791015625</met:lat> <met:belongTo>http://www.agmodel.org/Kanagawa.rdf</met:belongTo> <met:metCatalog> <met:MetCatalog> <met:metElement>&kngw;#DailyAverageWindVelocity</met:metElement> <met:catalogStart>1995-12-31T15:00:00+0000</met:catalogStart> <met:measurementHeight>2.0</met:measurementHeight> <met:MetCatalog> </met:metCatalog> ……. </met:MetStation> Description of weather station The details of measured items This item is defined in Item definition file

  9. DEMO (Single station access) Basic Vocabulary <owl:Class rdf:ID="DailyMeanAirTemperature“/> Database : Item definition <met: DailyMeanAirTemperature rdf:ID=“Air“ /> 3. Find the local item that is equivalent to “DailyMeanAirTemperature” 2. Find the basic vocabulary that is equivalent to the request Inference Engine 4. Pass the local item “Air” DB Broker 1. Reuqest Resolution  Daily Summary  Mean Item  Air Temperature 5. Query the database using the local item “Air”

  10. DEMO • Basic Vocabulary Tree • Data Access using Google Maps http://www.agmodel.org/metbroker/demo.html

  11. Summary • We show you a demo application of New MetBroker that uses small single ontology to integrate distributed Meteorological Data virtually. • Using “Temperature” you can get mean, maximum, and minimum air temperature and soil temperature • Japanese item names and English item names are supported • May support other languages without any change in program sources.

More Related