120 likes | 217 Views
Photochimie en orbite : Amino/UVolution/Process – 1/6.
E N D
Photochimie en orbite : Amino/UVolution/Process – 1/6 H. Cottin (1), P. Coll (1), M. Cloix (1), D. Coscia (2), N. Fray (1), Y.Y. Guan (1), F. Macari (1), F. Raulin (1), F. Stalport (1), C. Szopa (2), D. Chaput (3), M. Viso (3), M. Bertrand (4), A. Chabin (4), F. Westall (4), A. Brack (4), J. Vergne (5), M.C. Maurel (5) (1) LISA, Université Paris 7 & Paris 12, UMR 7583 CNRS, Créteil, France (2) LATMOS-IPSL, Verrières-le-Buisson, France (3) CNES, France (4) CBM, CNRS, Orléans, France, (5) Anbiophy, UPMC, Paris, France
First order decay absorption cross section (cm²) photons flux (photon.cm-2.s-1) Solar or lab. Photochimie en orbite : Amino/UVolution/Process – 2/6 photolysis quantum yield t1/2 = ln 2 / J
PROCESS, AMINO : International Space Station • PROCESS – Expose-E (Columbus) : Fev. 2008 – August 2009 • AMINO - Expose-R (Zvezda) : Mars 2009 – Sept. 2010 UV-olution : FOTON-3M / BIOPAN 6 September 14-26, 2007 BIOPAN (FOTON) EXPOSE (ISS)
Photochimie en orbite : Amino/UVolution/Process – 5/6 Cycle of organic matter in Titan Origin of the distributed sources Exogenous delivery Stability of organic molecules at Mars surface ARN stability
Photochimie en orbite : Amino/UVolution/Process – 6/6 • 2010 : • Analyse des échantillons PROCESS • Retour des échantillons AMINO • Réponse à l’AO ESA ILSRA 2009 • Projet PSS : Photochemistry on the Space Station (LISA, LATMOS, CBM, Obs. Catania, Obs. Leiden, Nasa Ames) • Projet VITRINE (LISA, LATMOS, CBM, IAS, PIIM, ECP, LERMA, Obs. Catania, Obs. Leiden, Nasa Ames) : suivi in situ en orbite et extension à basse température • R&T CNES sur VITRINE
Exploration in situ : prospective ILMA (astéroïde) – 1/6 ILMA: Ion Laser Mass Analyser, in-situ analysis of a carbonaceous asteroid for the MARCO POLO spatial mission. Conception of a very high mass resolution mass spectrometer H. Cottin(1), J.J. Berthelier (6), A. Bouabdellah (6), C. Briois(2), N. Carrasco(6), P. Gilbert (6), C. Engrand(3), N. Grand(1), P. Zapf (1), M. Hilchenbach(7), H. Krüger(7), A. Makarov(8), P. Puget(5), B. Arezki (5), C. Szopa(6), L. Thirkell(2), A. Boukrara(2), and R. Thissen(4) (1) LISA, Universités Paris 12, Paris 7, UMR 7583 CNRS, 94010 Créteil cedex, (2) LPC2E - UMR-CNRS 6115 , 45071 Orléans, France, (3) CSNSM, 91405 ORSAY Campus, France, (4) LPG, UMR 5109 CNRS - UJF, 38000 Grenoble, France, (5) LAOG, CNRS, Université Joseph Fourier, UMR 5571, BP 53, F-38041 Grenoble, France, (6) LATMOS, CNRS, UVSQ, UPMC, 91371 Verrières le Buisson Cedex, France, (7) MPI fürSonnensystemforschung,, D-37191 Katlenburg-Lindau, Germany, (8)Thermo Fisher Scientific, Hanna-KunathStr 11, 28199 Bremen, Germany
LDIMS Process Desorbed Ions Laser shot Vacuum Solid Collision cascade Region of greatest damage Region of least damage Exploration in situ : prospective ILMA (astéroïde) – 2/6 TECHNICAL REQUIREMENTS Mass: ~ 2.2 kg (with 20% margin) Volume: 15x15x5 cm3 Electronic unit : 15x10x3 cm3 Mean power: ~ 9 W Mass range: 1-30 / 25-750 amu Mass resolution: 100,000 at 50% height at 400 amu Analyzed area: a few µm² to 1 mm² Data budget : 40 Mo per analysis (at least 2 analysis per sample). Thanks to the highresolution Analysisof Minerals & Organics
Exploration in situ : prospective ILMA (astéroïde) – 3/6 First publication Makarov, Anal Chem (2000)
Exploration in situ : prospective ILMA (astéroïde) – 4/6 m/Dm = 100 000 m/Dm = 3000 m/Dm = 10 000 Example : mixture of complex high molecular weight organic compounds m/z = 262