240 likes | 262 Views
Dive into Laplace transforms, contour integrals, and Cauchy-Riemann equations in this lecture exploring complex variables and their derivatives. Learn about the Cauchy integral theorem and Kramers-Kronig relationships.
E N D
PHY 711 Classical Mechanics and Mathematical Methods • 10-10:50 AM MWF Olin 103 • Plan for Lecture 21: • Read Chapter 7 & Appendices A-D • Generalization of the one dimensional wave equation various mathematical problems and techniques including: • Laplace transforms • Complex variables • Contour integrals PHY 711 Fall 2018 -- Lecture 21
Complex numbers Functions of complex variables Derivatives: Cauchy-Riemann equations PHY 711 Fall 2018 -- Lecture 21
Analytic function PHY 711 Fall 2018 -- Lecture 21
Some details PHY 711 Fall 2018 -- Lecture 21
Example: Im(z) Re(z) PHY 711 Fall 2018 -- Lecture 21
Another example: Im(z) Re(z) PHY 711 Fall 2018 -- Lecture 21
Cauchy integral theorem for analytic function f(z): PHY 711 Fall 2018 -- Lecture 21
Example Im(z) Re(z) PHY 711 Fall 2018 -- Lecture 21
Example -- continued Im(z) Re(z) PHY 711 Fall 2018 -- Lecture 21
Example -- continued x Im(z’) Re(z’) PHY 711 Fall 2018 -- Lecture 21
Example -- continued Kramers-Kronig relationships PHY 711 Fall 2018 -- Lecture 21
Comment on evaluating principal parts integrals y’ x’ PHY 711 Fall 2018 -- Lecture 21
b(x’) -2L -L x’ 2L L PHY 711 Fall 2018 -- Lecture 21
For our example: b(x) a(x) PHY 711 Fall 2018 -- Lecture 21