700 likes | 867 Views
Cosmic reionization and the history of the neutral intergalactic medium MAGPOP Summer School, Kloster Seeon Chris Carilli, NRAO, August 10, 2007. Introduction: What is Cosmic Reionization? Current constraints on the IGM neutral fraction with cosmic epoch
E N D
Cosmic reionization and the history of the neutral intergalactic medium MAGPOP Summer School, Kloster Seeon Chris Carilli, NRAO, August 10, 2007 • Introduction: What is Cosmic Reionization? • Current constraints on the IGM neutral fraction with cosmic epoch • Neutral Intergalactic Medium (IGM) – HI 21cm signals • Low frequency telescopes and observational challenges
References • Reionization and HI 21cm studies of the neutral IGM • “Observational constraints on cosmic reionization,” Fan, Carilli, Keating 2006, ARAA, 44, 415 • “Cosmology at low frequencies: the 21cm transition and the high redshift universe,” Furlanetto, Oh, Briggs 2006, Phys. Rep., 433, 181 • Early structure formation and first light • “The first sources of light and the reionization of the universe,” Barkana & Loeb 2002, Phys.Rep., 349, 125 • “The reionization of the universe by the first stars and quasars,” Loeb & Barkana 2002, ARAA, 39, 19 • “Observations of the high redshift universe,” Ellis 2007, Saas-Fe advanced course 36
History of Baryons in the Universe Ionized Neutral Reionized
Chris Carilli (NRAO) Berlin June 29, 2005 WMAP – structure from the big bang
Dark Ages Epoch of Reionization Twilight Zone • Last phase of cosmic evolution to be tested • Bench-mark in cosmic structure formation indicating the first luminous structures
Dark Ages Epoch of Reionization Twilight Zone • Epoch? • Process? • Sources?
Reionization: the movie Gnedin 03 8Mpc comoving
Constraint I: Gunn-Peterson Effect z Barkana and Loeb 2001
Gunn-Peterson Effect toward z~6 SDSS QSOs Fan et al 2006
Gunn-Peterson limits to f(HI) GP = 2.6e4 f(HI) (1+z)^3/2 End of reionization? f(HI) <1e-4 at z= 5.7 f(HI) >1e-3 at z= 6.3 • to f(HI) conversion requires ‘clumping factor’ • >>1 for f(HI)>0.001 => low f() diagnostic • GP => Reionization occurs in ‘twilight zone’, opaque for obs <0.9 m
Contraint II: The CMB Temperature fluctuations due to density inhomogeneities at the surface of last scattering (z ~ 1000) Sound horizon at recombination ~ 1deg Angular power spectrum ~ variance on given angular scale ~ square of visibility function Sachs-Wolfe
Reionization and the CMB No reionization Reionization • Thomson scatting during reionization (z~10) • Acoustics peaks are ‘fuzzed-out’ during reionization. • Problem: degenerate with intrinsic amplitude of the anisotropies.
CMB large scale polarization -- Thomson scattering during reionization Page + 06; Spergel 06 • Scattering CMB local quadrapole => polarized • Large scale: horizon scale at reionization ~ 10’s deg • Signal is weak: • TE = 10% TT (few uK) • EE = 1% TT • EE (l ~ 5)~ 0.3+/- 0.1 uK TT TE EE e ~ l / mfp ~ l nee(1+z)^2 = 0.09+/-0.03
Constraint II: CMB large scale polarization -- Thomson scattering during reionization • Rules-out high ionization fraction at z> 15 • Allows for finite (~0.2) ionization to high z • Most action occurs at z ~ 8 to 14, with f(HI) < 0.5 TT TE EE Page + 06; Spergel 06
Combined CMB + GP constraints on reionization • e = integral measure to recombination=> allows many IGM histories • Still a 3 result (now in EE vs. TE before)
Pushing into reionization: QSO 1148+52 at z=6.4 • tuniv = 0.87Gyr • Lbol = 1e14 Lo • Black hole: ~3 x 109 Mo (Willot etal.) • Gunn Peterson trough (Fan etal.)
1148+52 z=6.42: Gas detection 46.6149 GHz CO 3-2 Off channels Rms=60uJy VLA IRAM • M(H2) ~ 2e10 Mo • zhost = 6.419 +/- 0.001 (note: zly = 6.37 +/- 0.04) VLA
Constrain III: Cosmic Stromgren Sphere • Accurate zhost from CO: z=6.419+/0.001 • Proximity effect: photons leaking from 6.32<z<6.419 White et al. 2003 z=6.32 • ‘time bounded’ Stromgren sphere: R = 4.7 Mpc • tqso = 1e5 R^3 f(HI)~ 1e7yrs or • f(HI) ~ 1 (tqso/1e7 yr)
CSS: Constraints on neutral fraction at z~6 • Nine z~6 QSOs with CO or MgII redshifts:<R> = 4.4 Mpc (Wyithe et al. 05; Fan et al. 06; Kurk et al. 07) • GP => f(HI) > 0.001 • If f(HI) ~ 0.001, then <tqso> ~ 1e4 yrs – implausibly short given QSO fiducial lifetimes (~1e7 years)? • Probability arguments + size evolution suggest: f(HI) > 0.05 Wyithe et al. 2005 Fan et al 2005 P(>xHI) 90% probability x(HI) > curve =tqso/4e7 yrs
Difficulties for Cosmic Stromgren Spheres • (Lidz + 07, Maselli + 07) • Requires sensitive spectra in difficult near-IR band • Sensitive to R: f(HI) R^-3 • Clumpy IGM => ragged edges • Pre-QSO reionization due to star forming galaxies, early AGN activity
OI • Not ‘event’ but complex process, large variance: zreion ~ 14 to 6 • Good evidence for qualitative change in nature of IGM at z~6 ESO
3, integral measure? Geometry, pre-reionization? Local ionization? OI Abundance? Saturates, HI distribution function, pre-ionization? Local ioniz.? • Current probes are all fundamentally limited in diagnostic power • Need more direct probe of process of reionization = HI 21cm line ESO
Low frequency radio astronomy: Most direct probe of the neutral IGM during, and prior to, cosmic reionization, using the redshifted HI 21cm line: z>6 => 100 – 200 MHz Square Kilometer Array
HI mass limits => large scale structure Reionization 1e13 Mo 1e9 Mo
HI 21cm radiative transfer: large scale structure of the IGM LSS: Neutral fraction / Cosmic density / Temperature: Spin, CMB
Dark Ages HI 21cm signal • z > 200: T = TK = Ts due to collisions + Thomson scattering => No signal • z ~ 30 to 200: TK decouples from T, but collisions keep Ts ~ TK => absorption signal • z ~ 20 to 30: Density drops Ts~ T => No signal Barkana & Loeb: “Richest of all cosmological data sets” • Three dimensional in linear regime • Probe to k ~ 10^3 /Mpc vs. CMB limit set by photon diffusion ~ 0.2/Mpc • Alcock-Pascinsky effect • Kaiser effect + peculiar velocites T = 2.73(1+z) TK = 0.026(1+z)^2 Furlanetto et al. 2006
TK T Enlightenment and Cosmic Reionization-- first luminous sources • z ~ 15 to 20: TScouples to TK via Lya scattering, but TK < T => absorption • z ~ 6 to 15: IGM is heated (Xrays, Lya, shocks), partially ionized => emission • z < 6: IGM is fully ionized
Signal I: Global (‘all sky’) reionization signature Signal ~ 20mK < 1e-4 sky Feedback in Galaxy formation No Feedback Possible higher z absorption signal via Lya coupling of Ts -- TK due to first luminous objects Furlanetto, Oh, Briggs 06
Signal II: HI 21cm Tomography of IGM Zaldarriaga + 2003 z=12 9 7.6 • TB(2’) = 10’s mK • SKA rms(100hr) = 4mK • LOFAR rms (1000hr) = 80mK
Signal III: 3D Power spectrum analysis only LOFAR + f(HI) SKA McQuinn + 06
Signal IV: Cosmic Web after reionization Ly alpha forest at z=3.6 ( < 10) Womble 96 • N(HI) = 1e13 – 1e15 cm^-2, f(HI/HII) = 1e-5 -- 1e-6 => before reionization N(HI) =1e18 – 1e21 cm^-2 • Lya ~ 1e7 21cm => neutral IGM opaque to Lya, but translucent to 21cm
Signal IV: Cosmic web before reionization: HI 21Forest 19mJy z=12 z=8 130MHz 159MHz • radio G-P (=1%) • 21 Forest (10%) • mini-halos (10%) • primordial disks (100%) • Perhaps easiest to detect (use long baselines) • ONLY way to study small scale structure during reionization
Radio sources beyond the EOR sifting problem (1/1400 per 20 sq.deg.) 1.4e5 at z > 6 S120 > 6mJy 2240 at z > 6
Signal V: Cosmic Stromgren spheres around z > 6 QSOs • LOFAR ‘observation’: • 20xf(HI)mK, 15’,1000km/s • => 0.5 x f(HI) mJy • Pathfinders: Set first hard limits on f(HI) at end of cosmic reionization • Easily rule-out cold IGM (T_s < T_cmb): signal = 360 mK 5Mpc 0.5 mJy Wyithe et al. 2006
Signal VI: Dark Ages: Baryon Oscillations Very low frequency (<75MHz) = Long Wavelength Array • Very difficult to detect • Signal: 10 arcmin, 10mk => S30MHz = 0.02 mJy • SKA sens in 1000hrs: • = 20000K at 50MHz => • rms = 0.2 mJy • Need > 10 SKAs • Need DNR > 1e6 z=50 z=150 Barkana & Loeb 2005
Challenge I: Low frequency foreground – hot, confused sky Eberg 408 MHz Image (Haslam + 1982) • Coldest regions: T ~ 100 (/200 MHz)^-2.6 K • 90% = Galactic foreground • 10% = Egal. radio sources ~ 1 source/deg^2 with S140 > 1 Jy
Solution: spectral decomposition (eg. Morales, Gnedin…) • Foreground = non-thermal = featureless over ~ 100’s MHz • Signal = fine scale structure on scales ~ few MHz Signal/Sky ~ 2e-5 10’ FoV; SKA 1000hrs Cygnus A 500MHz 5000MHz Simply remove low order polynomial or other smooth function?
Crosscorrelation in frequency, or 3D power spectral analysis: different symmetries in frequency space for signal and foregrounds. Freq Foreground Signal Morales 2003
Cygnus A at WSRT 141 MHz 12deg field(de Bruyn) Frequency differencing ‘errors’ are ‘well-behaved’ ‘CONTINUUM’ (B=0.5 MHz) ‘LINE’ CHANNEL (10 kHz) - CONT (Original) peak: 11000 Jy noise 70 mJy dynamic range ~ 150,000 : 1
30o x 30o Galactic foreground polarization‘interaction’ with polarized beams frequency dependent residuals! Solution: good calibration of polarization response NGP 350 MHz 6ox6o ~ 5 K pol IF Faraday-thin 40 K at 150 MHz WENSS: Schnitzeler et al A&A Jan07
Challenge II: Ionospheric phase errors – varying e- content TID 74MHz Lane 03 • ‘Isoplanatic patch’ = few deg = few km • Phase variation proportional to wavelength^2
Ionospheric phase errors: The Movie • Solution: • Wide field ‘rubber screen’ phase self-calibration = ‘peeling’ • Requires build-up of accurate sky source model 15’ Virgo A 6 hrs VLA 74 MHz Lane + 02
Challenge III: Interference 100 MHz z=13 200 MHz z=6 • Solutions -- RFI Mitigation (Ellingson06) • Digital filtering: multi-bit sampling for high dynamic range (>50dB) • Beam nulling/Real-time ‘reference beam’ • LOCATION!
Beam nulling -- ASTRON/Dwingeloo (van Ardenne) Factor 300 reduction in power
VLA-VHF: 180 – 200 MHz Prime focus CSS search Greenhill, Blundell (SAO); Carilli, Perley (NRAO) Leverage: existing telescopes, IF, correlator, operations • $110K D+D/construction (CfA) • First light: Feb 16, 05 • Four element interferometry: May 05 • First limits: Winter 06/07
Project abandoned: Digital TV KNMD Ch 9 150W at 100km
RFI mitigation: location, location location… 100 people km^-2 1 km^-2 0.01 km^-2 (Briggs 2005)
Multiple experiments under-way: ‘pathfinders’ LOFAR (NL) MWA (MIT/CfA/ANU) SKA 21CMA (China)