1 / 47

张承民, 尹红星 National Astronomical Observatories Chinese Academy of Sciences, Beijing

QPOs ,准周期振荡 in Black Hole , Neutron Star X-ray Sources: X-ray bursts, accreting-powered pulsars Einstein’s Relativity in Strong Gravitation. 张承民, 尹红星 National Astronomical Observatories Chinese Academy of Sciences, Beijing. OUTLINE OF TALK. Introduction of RXTE

ronnie
Download Presentation

张承民, 尹红星 National Astronomical Observatories Chinese Academy of Sciences, Beijing

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. QPOs,准周期振荡in Black Hole,Neutron Star X-ray Sources: X-ray bursts, accreting-powered pulsarsEinstein’s Relativity in Strong Gravitation 张承民, 尹红星 National Astronomical Observatories Chinese Academy of Sciences, Beijing

  2. OUTLINE OF TALK Introduction of RXTE • Black Hole (BH) and Neutron Star (NS) in Low Mass X-ray Binary (LMXB) • KHz Quasi Periodic Oscillation (QPO) • Millisecond accreting-powered X-ray Pulsar • Type-I X-ray Burst Oscillation • QPOs of NS/BH X-ray Sources • Theoretical Mechanisms---Strong Gravity • Further Expectation

  3. Binary X-ray Sources Normal Star + Compact Star 10,000 lyr, 300Hz/450Hz Micro-quasar, Radio jet 7 solar mass/optical

  4. QPO frequencies discovered by RXTE 1996—2006, reviewed byvan der Klis 2005, 06 • NBO, ~5 Hz • HBO, ~20-70 Hz • Hundred, ~100 Hz • kHz, ~1000-Hz • Burst oscillation, ~300 Hz • Spin frequency, ~300 Hz • Low, high QPO, ~0.1 Hz • Etc. QPO: Quasi Periodic Oscillation 准周期振荡

  5. Atoll and ZSources --- LMXB CCD ~1% Eddington Accretion ~Eddington Accretion Accretion rate direction

  6. Discovery: typical twin KHZ QPOs Separation ~300 Hz Typically: Twin KHz QPO Upper ν2 = 1000 (Hz) Lower ν1 = 700 (Hz) 18/25 sources Sco x-1, van der Klis et al 1997

  7. QPO v.s. Accretion rate relation QPO frequency increases with the accretion rate SCO X-1, Van der Klis, 2005, 06 QPO轮廓随吸积率变宽/低,消失

  8. KHz QPO Data,Atoll sources 最大值Max:νmax=1329 Hz, van Straaten 2000 min: ~200 Hz 平均值/Distribution of kHz QPOs:QPO (Atoll) ~ QPO(Z) Zhang et al 2006; 原因?

  9. kHz QPOs of Z Sources

  10. Difference of twin kHz QPOs = const?Beat model by Miller, Lamb & Psaltis 1998

  11. Saturation of kHz QPO frequency ? 4U1820-30, NASA W. Zhang et al, 1998 Kaaret, et al 1999 Swank 2004; Miller 2004 BH/ISCO: 3 Schwarzschild radius Innermost stable circular orbit NS/Surface: star radius, hard surface

  12. Parallel Line PhenomenonkHz QPO-luminosity relation Similarity/Homogeneous ? Among the different sources, same source at the different time

  13. kHz QPO v.s. Count rate kHz QPO corresponds to the position in CCD, to the accretion rate Mdot; QPO ~ Mdot, 1/B B ~ Mdot, proportional Cheng & Zhang, 1998/2000 Zhang & Kojima, 2006

  14. Accreting millisecond X-ray pulsar--- SAX J1808.4-3658 (7 sources) Wijnands and van der Klis, 1998 Nature Wijnands et al 2003 Nature 4 sources by Markwardt et al. 2002a, 2003a, 2003b, Galloway et al. 2002

  15. SAXJ 1808.4-3658 Twin kHz QPOs 700 Hz, 500 Hz Burst/spin: 401 Hz See, Wijnands 2006 XTE 1807, kHz QPO, 191 Hz, Linares et al. 2005 F. Zhang et al. 2006 Burst frequency ~ spin frequency ?, 2003

  16. IGR J00291+5934 598.88 Hz, Markwardt 2004, 7 MSP sources

  17. Spectrum of Type-I X-ray Burst frequency 4U1702-43, van der Klis 2006; Strohmayer and Bildsten 2003

  18. Type-I X-ray Burst • Type-I X-ray Burst, Lewin et al 1995/Bildsten 1998 • Thermonuclear reaction on accreting NS surface (T/P, spot) • Burst rise time: 1 second • Burst decay time: 10-100 second • Total energy: 1039-40 erg. Eddington luminosity ! 4U1728-34, (363 Hz) Strohmayer et al 1996 362.5 Hz --- 363.9 Hz, in 10 second

  19. Burst Oscillations

  20. On the burst frequency • Burst frequency increases ~ 2 Hz, drift. • Decreasing is discovered • From hot spot on neutron star • kHz QPO separation ~ burst/spin frequency

  21. Burst and Spin frequency kHz QPO separation=195 Hz/(spin=401 Hz) Burst and Spin frequency are similar X X X 11 burst sources, Muno et al 2004 7 X-ray pulsars, Wijnands 2004; Chakrabarty 2004

  22. 11 burst sources, Muno 2004

  23. 3rd kHz QPO ? 25 kHz QPO 源

  24. Low frequency QPO---kHz QPO 关系 Psaltis et al 1998, 1999 Belloni et al 2002; 2005 Low frequency QPO< 100 Hz FBO/NBO = 6-20 (Hz) HBO = 15-70 (Hz) Empirical Relation νHBO = 50. (Hz)(ν2 /1000Hz)1.9-2.0 νHBO = 42. (Hz) (ν1/500Hz)0.95-1.05 νqpo = 10. (Hz) (ν1/500Hz) ν1 = 700. (Hz)(ν2 /1000Hz)1.9-2.0

  25. Twin kHz QPO relations ν1 = ~700. (Hz)(ν2 /1000Hz)b b ~ 1.6 Atoll Source 4U1728 b~ 1.8 Z Source Sco X-1 Zhang et al. 2006

  26. Twin kHz QPO distribution

  27. Twin kHz QPO distribution

  28. Low-high frequency QPO 关系 Neutron stars Black holes ? White dwarfs, Cvs Zhang 2005: Model Warner 2006; Warner & Woudt 2004; Mauche 2002 + 27 CVs, 5 magnitude orders in QPOs

  29. Black Hole High Frequency QPOs GRO J1655-40, XTE J1550-564 XTE 1650-5000, 4U1630-47 XTE 1859-226, H 1743-322 GRS 1915+105, 4/7 Sources Van der Klis 2006 • HFQPO: 40-450 (Hz) • Constant (stable) in frequency Mass/Spin/ Luminosity • Pair frequency relation 3:2 • Frequency-Mass relation: 1/M • 7 BH sources, van der Klis 2006 • Jets like Galactic BHs (McClintock & Remillard 2003) Different from those of NS’s Genzel 2003; Auschenbach 2004; GC QPOs, 3:2 νk= (1/2π)(GM/r3)1/2 = (c/2πr) (Rs/2r)1/2 νk (ISCO) = 2.2 (kHz) (M/Mסּ) -1 Magnetosphere-disk instability noise: mechanism:? Miller, et al 1998

  30. High Frequency QPOs in Black Hole LMXBs

  31. H 1743-322[10] 240 160 XTE J1650-500[14] 250 (Astro-ph/0408402[8])

  32. A comparison between high-frequency QPOs in BH LMXBs and those in NS LMXBs

  33. STELLAR Black Hole—Micro-quasar GRS 1915+105 41:67 Hz, 33 solar mass 10,000 lyr, 300Hz:450Hz=2:3 Microquasar, Radio jet 7 solar mass/optical

  34. QPO and Break Frequency

  35. Theoretical Consideration Accretion Flow around NS/BH Hard surface ? • Strong Gravity: • Schwarzschild Radius: Rs=2GM/c2 • Innermost Stable Circular Orbit RIsco= 3Rs • Strong Magnetic: • 108-9 Gauss (Atoll, Z-sources) • Beat Model: • Kepler Frequency • Difference to Spin frequency

  36. QPO Models Miller, Lamb & Psaltis ’ Beat Model, developed from Alpar & Shaham 1985 Nature ; Lamb et al 1985 Nature Abramovicz and cooperators ’ Model non-linear resonance between modes of accretion disk oscillations HFQPO: Stella black hole QPO, 3:2 relation Wang, DX, 2003, positions Titarchuk and cooperators ’ Model transition layer formed between a NS surface and the inner edge of a Keplerian disk, QPO: magnetoacoustic wave (MAW), Keplerian frequency. Low-high frequency relation 0.08 ratio Relativistic precession model by Stella & Vietri 1999

  37. Theoretical Models What modulate X-ray Flux ? Why quasi periodic, not periodic ? Parameters: M/R/Spin, B?--Z/Atoll Beat Model (HBO), νHBO = νkepler - νspin νKepler ≈ r-3/2is the Kepler Frequency of the orbit νspin Constant, is the spin Frequency of the star Alpar, M., Shaham, J., 1985, Nature r ~ 1/Mdot , νHBO ~ Mdot Beat Model for KHz QPO ν2 = νkepler ν1 = νkepler - νspin ∆ν = ν2 - ν1 = νspin Miller, Lamb, Psaltis 1998; Strohmayer et al 1996 Lamb & Miller 2003 …Constant

  38. X-射线源准周期振荡QPO, Beat ? SAXJ 1808, Wijnands, Nat, 2003 XTEJ 1807, Zhang, F, Qu JL, Zhang CM, Li TP, Chen, W. , 2006 间隔常数?NO! 拍模型预言:间隔常数=自旋 Alpar和Shaham,1985,Nature。 Lamb et al 1985, Nature。 Miller et al 1998, ApJ。

  39. Einstein’s Prediction: Perihelion Motion of Orbit Perihelion precession of Mercury orbit = 43” /century, near NS, ~10^16 times large

  40. N. Copernicus Neutron Star Orbit ISCO Saturation Einstein’s General Relativity: Perihelion precession Precession Model for KHz QPO, Stella and Vietri, 1999 ν2 = νkepler ν1 = νprecession = ν2 [1 – (1 – 3Rs/r)1/2] ∆ν = ν2 - ν1 is not constant

  41. Problems: • Vacuum • Circular orbit • Test particle • Predicted 2 M⊙ • 5. 30 sources, NS mass ~ 1.4 solar mass Theoretical model Stella and Vietrie, 1999, Precession model

  42. Lense-Thirring Precession Zhang, SN et al 1997; Cui et al 1998: BH precession ? L.Stella, M.Vietri, 1998 From Einstein GR, frame dragging was first quantitatively stated by W. Lense and H. Thirring in 1918, which is also referred to as the Lense-Thirring effect Gravity Probe B, Gyroscope experiment, Stanford U, led by F.Everit, 2003 Gravitomagnetism Conf., 2nd Fairbank W., Rome U, organized by R.Ruffini, 1998 Book “Gravitation and Inertia” by Ciufolini and Wheeler, 1995

  43. Problems ? • Vacuum ? • Kerr rotation ? • Magnetic Field ? • Inner Accretion Disk ? Similarity: common parameter: accretion rate/radius

  44. Alfven wave oscillation MODEL (in Schwarzschild spacetime): Zhang 2004; Li & Zhang 2005 Keplerian Orbital frequency resonance MHD Alfven wave Oscillation in the orbit ν2 = 1850 (Hz) A X3/2 ν1 = ν2X (1- (1-X)1/2)1/2 A=m1/2/R63/2; X=R/r, m: Ns mass in solar mass R6 is NS radius in 10^6 cm

  45. Constrain on Star EOS , mass & radius Kerr spacetime ? NSMass in solar mass NS radius (km) CN1/CN2: normal neutron matter, CS1/CS2: Strange matter CPC: core becomes Bose-Einstein condensate of pions

  46. 10年RXTE探测总结 • 观测,进展较大,QPO关系明确 • 理论,进展缓慢,很多模型? 物理实验室 强引力广义相对论验证 中子星结构检验核物理 开普勒运动 近星点进动 LT 进动/引力磁 引力红移 黑洞/Kerr 时空 引力波 光线弯曲 质量 半径 核物态(中子/夸克) 磁场 旋转 吸积流动 QPO机制? 数据处理? 新物理?

  47. References: 1: Remillard, R. A. et al. 1999, ApJ, 522, 397 2: Strohmayer, T. E. 2001, ApJ, 552, L49 3: Remillard, R. A. et al. 1999, ApJ, 517, L127 4: Remillard, R. A. et al. 2002, ApJ, 580, 1030 5: Miller, J. M. et al. 2001, ApJ, 563, 928 6: Strohmayer, T. E. 2001, ApJ, 554, L169 7: Remillard, R. A. 2003, abstract HEAD,7,3003 8: Remillard, R. A. 2002 (astro-ph/0208402) 9: Belloni, T. et al. 2006 (astro-ph/0603210) 10: Homan, J. et al. 2005, ApJ, 623, 383 11: Remillard, R. A. et al. 2006, ApJ, 637, 1002 12: Markwardt, C. 2001, ApSSS, 276,209 13: Klein-Wolt, M. et al. 2004, NuPhS, 132, 381 14: Homan, J. et al. 2003, ApJ, 586, 1262

More Related