620 likes | 935 Views
1.抽象代數導論 (Introduction to Abstract Algebra) - 2.張量分析 (Tensor Analysis) - 3.正交函數展開 (Orthogonal Function Expansion) - 4.格林函數 (Green‘s Function) - 5.變分法 (Calculus of Variation) - 6. 積分方程式 ( Integral equations). N968201 高等工程數學. ※ 先修課程:微積分﹑工程數學(一)-(三). 授課教師. 黃吉川 國立成功大學機械博士
E N D
1.抽象代數導論(Introduction to Abstract Algebra)-2.張量分析(Tensor Analysis)-3.正交函數展開(Orthogonal Function Expansion)-4.格林函數(Green‘s Function)-5.變分法(Calculus of Variation)-6.積分方程式(Integral equations) N968201高等工程數學 ※先修課程:微積分﹑工程數學(一)-(三)
授課教師 黃吉川 國立成功大學機械博士 非線性混沌理論、微觀力學 、薄膜工程、半導體製程、 生物奈微米、生物資訊、生醫工程、腦神經科學、 量子資訊、量子系統控制論 、知識經濟、極限科技、 光電工程 Office hour: by appointment Phone : 06-2757575 ext. 63348 (教授室) 06-2757575 ext. 50201 E-mail : chchwang@mail.ncku.edu.tw Teaching assistant office phone: ext. 63345-43 王雲哲 美國威斯康興大學麥迪遜分校博士 複合材料、黏彈性力學、穩定性分析 Office hour: Tuesday 14-15, Wednesday 15-16 or by appointment. Phone: 06-2757575 ext63140E-mail: yunche@mail.ncku.edu.tw or yunche@mac.com Website: http://myweb.ncku.edu.tw/~yunche Teaching assistant office phone: ext. 63109-9250
Reference: • Birkhoff, G., MacLane, S., A Survey of Modern Algebra, 2nd ed, The Macmillan Co, New York, 1975. • 徐誠浩, 抽象代數-方法導引, 復旦大學, 1989. • Arangno, D. C., Schaum’s Outline of Theory and Problems of Abstract Algebra, McGraw-Hill Inc, 1999. • Deskins, W. E., Abstract Algebra, The Macmillan Co, New York, 1964. • O’Nan, M., Enderton, H., Linear Algebra, 3rd ed, Harcourt Brace Jovanovich Inc, 1990. • Hoffman, K., Kunze, R., Linear Algebra, 2nd ed, The Southeast Book Co, New Jersey, 1971. • McCoy, N. H., Fundamentals of Abstract Algebra, expanded version, Allyn & Bacon Inc, Boston, 1972. • Hildebrand, F. B., Methods of Applied Mathematics, 2nd ed, Prentice-Hall Inc, New Jersey, 1972.. • Burton, D. M., An Introduction to Abstract Mathematical Systems, Addison-Wesley, Massachusetts, 1965. • Grossman, S. I., Derrick, W. R., Advanced Engineering Mathematics, Happer & Row, 1988. • Hilbert, D., Courant, R., Methods of Mathematical Physics, vol(1), 狀元出版社, 台北市, 民國六十二年. • Jeffrey, A.,Advanced Engineering Mathematics, Harcourt, 2002. • Arfken, G. B., Weber, H. J., Mathematical Methods for Physicists, 5th ed, Harcourt, 2001. • Morse, F. B., Morse, F. H., Feshbach, H., Methods of Theoretical Physics, McGraw-Hill College, 1953
~ from Wikipedia David Hilbert Born January 23, 1862 Wehlau, East Prussia Died February 14, 1943 Göttingen, Germany Residence Germany Nationality German Field Mathematician Erdős Number 4 InstitutionUniversity of Königsberg and Göttingen University Alma Mater University of Königsberg Doctoral Advisor Ferdinand von Lindemann Doctoral Students Otto Blumenthal Richard Courant Max Dehn Erich Hecke Hellmuth Kneser Robert König Erhard Schmidt Hugo Steinhaus Emanuel Lasker Hermann Weyl Ernst Zermelo Known for Hilbert's basis theorem Hilbert's axioms Hilbert's problems Hilbert's program Einstein-Hilbert action Hilbert space Societies Foreign member of the Royal Society Spouse Käthe Jerosch (1864-1945, m. 1892) Children Franz Hilbert (1893-1969) Handedness Right handed The finiteness theorem Axiomatization of geometry The 23 Problems Formalism
Philip M. Morse Founding ORSA President (1952) B.S. Physics, 1926, Case Institute; Ph.D. Physics, 1929, Princeton University. Faculty member at MIT, 1931-1969. Methods of Operations Research Queues, Inventories, and Maintenance Library Effectiveness Quantum Mechanics Methods of Theoretical Physics Vibration and Sound Theoretical Acoustics Thermal Physics Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables “Operations research is an applied science utilizing all known scientific techniques as tools in solving a specific problem.”
Francis B. Hildebrand George Arfken
Introduction to Abstract Algebra 抽象代數導論 • Preliminary notions • Systems with a single operation • Mathematical systems with two operations • Matrix theory: an algebraic view
可交換性 抽象代數系統 反元素 可交換群 單位元素 可交換單子 結合性 可交換半群 向量 封閉性 半群 單子 群 群胚 環 純量 = 可交換環 單子環 可交換單子環 域 向量空間
groupoid semigroup monoid group commutability Commutative groupoid Commutative semigroup Commutative monoid Commutative group
1 2 3 * 1 2 3 1 3 2 2 1 3 3 2 1 • Ex1 . Consider the operation defined on the set S= {1,2,3} by the operation table below. From the table, we see 2 (1 3)=2 3=2 but (2 1) 3=3 3=1 The associative law fails to hold in this groupoid(S, )
Ex2. Both the semigroups and are instances of monoids for each The empty set is the identity element for the union operation. for each The universal set is the identity element for the intersection operation.
Ex3. If the operation * is defined on S by a* b = max{ a, b },that is a * b is the larger of the elements a and b, or either one if a=b. a *(b * c) = max{ a, b, c } = (a * b) *c that shows (S, *) to be a semigroup Ex. Let(S,*)be a commutative semigroup. If a, b, c S, show that a*(b*c)=c*(b*a) a*(b*c)=(a*b)*c (結合性) =c*(b*a)(可交換性)
Ex4. consider the set of number and the operation of ordinary multiplication, and Z represents integer. • Closure: • Associate property • Identity element • Commutative property is a commutative monoid.
ring commutative group semigroup Distributive laws
在上述的system中牽涉的operation無論是+或是‧,都不是平常在上述的system中牽涉的operation無論是+或是‧,都不是平常 所提到的加減,不過為了方便起見,我們將+當作加法符號而‧ 當做乘法符號。因此ring (R,+,‧)中commutative group (R,+)稱為 additive group,semigroup (R,‧)為multiplicative semigroup。(R.+) 內特殊的單位元素(identity element)則為0,稱為zero element,其 反元素(inverse)則寫為-a,a是R的元素。 Ex5 .(Thm3-2) Let (R,+,‧) be a ring and Then –(a‧b) = a‧(-b) = (-a)‧b Proof. b+(-b)=0 addition inverse a‧b + a‧(-b) = a( b + (-b) ) = a‧0 = 0 left distributive law -(a‧b) = a‧(-b) similarly – (a‧b) = (-a)‧b.
monoid ring commutative group monoid Distributive laws
commutative ring ring commutative group semigroup Distributive laws
commutative monoid ring ring commutative group monoid Distributive laws
Field Commutative group " Î Þ · = · a,b,c R a b b a Þ · Î a b R Þ · · = · · a (b c) (a b) c Commutative group Þ · = · = a 1 1 a a - Þ " Î $ Î Þ · = · = 1 - 1 - 1 a R a R a a a a 1
Vector Space Commutative group Element are called vector (vector :a mathematic quantity having both magnitude and direction) Field Element are called scalar (scalar:a mathematic quantity having only magnitude) scalar multiplication properties
When m = n, we denote the particular vector space by Mn(R#) • Ex6: ← Vector Space
Linear Transformations 線性轉換 • Let V and W be vector spaces. A linear transformationfrom V into • W is a function T from the set V into W with the following two • properties: • x • T(x) T W V T is function from V to W,
Ex7. If V is any vector space, the identity transformation I, defined by Iα≡α, is a linear transformation from V to V. The zero transformation 0, defined by 0α≡0, is a linear transformation from V to V. Ex8.Let R be the field of real numbers and let V be the space of all functions from R into R which is continuous. Define T by Then T is a linear transformation from V to V. The function Tf is not only continuous but has a continuous first derivative. The linearity of integration is one of its fundamental properties.
Let V and W be vector spaces over the field F and let T be a linear transformation from V into W. • If V is finite-dimensional, the rank of T is the dimension of the range of T and the nullity of T is the dimension of the null space of T. • The null space (kernel) of T is the set of all vectors x in V such that T(x) = 0 V W • • T • ran T • ker T • 0
The Algebra of Linear Transformations • Let T: U → V and S : V → W be linear transformations, with U, V, and • W vector spaces. The composition of S and T
Representation of Linear Transformations by Matrices 線性轉換的矩陣表示 Let V be an n-dimensional vector space over the field F. T is a linear transformation, and α1, α2,…,αn are ordered bases for V. If 稱A為Linear TransformationT在α1, α2,…,αn下的表現矩陣 其中
同構 同態 群 群 陪集 子群 共軛類 共軛子群 不變子群 商群 直和 直積 直積群 直和群
群(Group)的觀念 1.有限群(finite group):G為有限集 1.1.階數: 群G的階數:有限群中元素的個數,記為 元素a的階數: The smallest integer 2.無限群(infinite group):G為無限集 2.1.分立群:含可數無限個元素的群 2.2.連續群:群中元素個數是不可數的 3.循環群(cyclic group):若群G的每一個群元都是G的某一固定群元素a 的冪 即G是由元素a生成的,a稱為群G的生成元素(generator),a的 階數就是循環群G的階數 顯然,循環群一定是阿貝爾群,反之則不然
Ex9. • 設g是循環群G的一生成元素,那麼 • 當有正整數 使 時 • 對任意 均有 • 當對任意正整數 均有 此定理稱為循環群結構定理,對循環群的組成和運算有所了解
4.阿貝爾群(Abelian)或交換群:元素的乘積滿足交換律4.阿貝爾群(Abelian)或交換群:元素的乘積滿足交換律 Ex10 :The group G is abelian if (1) (2) (3) Proof. (1) (2) (3)
兩個群之間的關係 1.同構(isomorphisms): 兩個群之間保持運算的雙射,則稱這兩個群同構,而兩個同構的群可以看成是等價的。 同構是將兩個群加以比較最重要的觀念,顧名思義,同構就是構造相同, 群的構造就是群元素之間的一種關係。透過這種雙設,一個群的結構可以用另外一個群表現出來。同構的兩個群,抽象來看是相同的,不同的只是群元素的表示方式 2.同態(homomorphism): 兩個群之間存在有保持運算的映射,則稱這兩個群是同態的, 而同態與同構的差別僅在群G到群G*之映射f的性質,當映射f為雙射,兩個群就是同構,否則兩個群就稱為同態。
定理1.(同態基本性質part1) show that if is a group homomorphism, the the following holds (1) (2) Proof (1) (2)
子群及其陪集 研究群的一般方法,可利用一個群的子集來推測整個群的性質 1.子群(subgroup) 定義: 一個群G的子集H,如果對於G的乘法運算來說作成一個群,則稱H 是G的一個子群。 定理2: 群G的一個非空子集H,作成G的一個子群的充分必要條件為: (i) (ii) 証明如下
Proof • (1)充分性 若(i), (ii)成立,則H作成一個群。 • 由於有條件(i),所以H對G的乘法運算是封閉的 • 結合律在G中成立,在H中自然成立 • 因為H是一個非空集合,所以H至少有一個元素a,由條件(ii),a-1也屬於H,由條件(i), 也屬於H • 由條件(ii),對於H的任意元素a,其逆元素a-1也屬於H,因此H作成一個群 • (2)必要性 • 若H是G的子群,則H對於G的乘法是封閉的,因此條件(i)成立。 • H既是一個群,必定存在一單位元素e*,對於H的任意元素a皆成立e*a=a,但e*和a都屬於G,所以e*是方程式ya=a在G裡的一個解,此方程式在G裡只有一解,就是G的單位元素e,所以必有e*=e H • H是一個群,故方程式ya=e在H中有解a*,而a*也是ya=e在G裡的解,但ya=e在G裡只有一個解,就是a-1,所以a*= a-1 H,得証
定理3. 群G的一個非空有限子集H作成G的一個子群的的充分必要條件( )為: 如果a與b是H的任意兩個元素,則 Proof (1)條件顯然是必要( )的 (2)充分性( ): H是一個有限的非空集合,設H有n個元素 -(*) 在H中任取一元素ak與(*)式做乘法運算得 -(**) ∵ (**)式中的所有n個乘積都屬於H,而ak也屬於H,但 H只有n個不同的元素, 所以(**)式中必有一個且只有 一個和ak相同, 設a1 ak與ak相同 另外於(**)式中必有一個且只有一個和e相同, 設aj ak與e相同 根據上述定理,可知群G的非空有限子集H成群。
2.陪集cosets 定義:設n階群G的一個子群S具有元素e, a1, a2, a3,… am(m≦n),b是G的一個元素,但b不屬於S,當b遍承S的所有元素時,所得到的m個元素be=b, ba2, ba3, … bam形成的集合稱為子群S的一個左陪集,並記作 bS,即有 同樣可定義S的右陪集為 由於陪集不含有單位元素,所以陪集不是子群。 若陪集含有單位元素baj,則由baj=e可得b= aj-1,於是必有b S,與原假設不屬於S矛盾 Ex11. The distinct (left) cosets of the Z3 in the group of integers Z are: where
定理:在有限群G中,子群S的兩個左陪集所含的元素,定理:在有限群G中,子群S的兩個左陪集所含的元素, 或者全同,或者不同 Proof
bS aS cS S kS ‧‧‧
Lagrange's theorem (group theory) 若 s 階群 S 是 g 階群 G 的任一子群,則s都整除g 為子群S全部陪集,子群S為s階,則每個陪集都有s個元素,又G的每個元素必須在子群S或S的 個不相交陪集僅出現一次,故必有 . 稱整數 為G中子群S的指數,還可得到一結論: 一個有限群G的任一元素 的階v都整除G的階g.這是因為G的一個v階元素 ( )可生成G的v階子群: 例. G為4-群 ,任取G子群S為 , 則S左陪集是 可知4-群的子群 只有一個陪集 ,其左分解為
~ from Wikipedia Joseph Louis, comte de Lagrange Born January 25, 1736(1736-01-25), Turin, Italy Died April 10, 1813 (aged 77),Paris, France Residence Italy, France, Prussia Nationality Italian, French Field Mathematics, Mathematical physics Institutions École Polytechnique Academic advisor Leonhard Euler Notable students Joseph Fourier,Giovanni Plana, Simeon Poisson Known for Analytical mechanics, Celestial mechanics Mathematical analysis Number theory Religion Roman Catholic Note he did not have a doctoral advisor but academic genealogy authorities link his intellectual heritage to Leonhard Euler, who played the equivalent role. Lagrangian mechanics Algebra Number Theory Miscellaneous Astronomy Mécanique analytique
Ex12:A set H≠ø is a subgroup of a group G iff Proof (1)充分性 H 是群G的子群 (2)必要性 H是群G中的非空集合,若 由上式 再由上式 證得H是群G的子群 (封閉性) (單位元素存在) (逆元素存在) (封閉性)
Ex13. 設G是個群,集合 是G的一個子群,此群稱為群G的中心 考慮單位元素e, 故 ,C非空集合 又 若 C為G的子群得證
共軛類和不變子群 1.共軛a conjugate of a G 定義:設a和b是群G的兩個元素,如果G中有一個元素x使得 則稱b與a共軛,並把這個運算叫做b通過a的相似轉換。 • 相似轉換滿足 • 自反性: • 對稱性: • 傳遞性: 又xy G,故a與c共軛 2.共軛類a conjugate of H G 定義:群G中所以相互共軛的元素組成一個等價類,稱為群G的共軛類,或簡稱為類,用符號來表示與a共軛的元素組成的類 。 在一個阿貝爾群中,每個群元素自成一類。 所以必有a=b,同理,任意群的單位元也自成一類
3.共軛子群(conjugacy class) 定義:設H是群G的一個子群,g為G的一個固定元素,所有ghg-1的集合 也是G的一個子群,稱為在群G中H的共軛子群或相似子群。 若 證明 之封閉性。此外 由前述定理得 成群。 4.不變子群(normal subgroup, invariant ) 定義:H為群G的子群,而g為G的任意一個元素,若恆有 成立,則稱H為G的不變子群或正規子群或自軛子群,記做 若H是群G的不變子群,g為G的任一元素,則g所屬的左陪集與右陪集相同 注意上述並不意味g可以和H的每一個元素交換,而僅僅說gH和Hg這兩個集合一樣
定理4: 群G的一個子群H是一個不變子群的充分必要條件 是:若H含有元素h,則H必包含h所屬的共軛類 Proof (1)必要性 :這是不變子群定義的直接結果。 (2)充分性 :假定此條件成立
定理5: (接續定理1:同態基本性質part 2) show that if ψ:G→G' is a group homomorphism, then the following holds (3) (4) (3) (4) Suppose H is normal in G