270 likes | 489 Views
Semantic Streams: a Framework for Composable Semantic Interpretation of Sensor Data. Kamin Whitehouse UC Berkeley EWSN, Feb 13, 2006 Joint with Feng Zhao and Jie Liu, Microsoft Research. fact. fact. fact. fact. Data Processing. Data Processing. fact. Data Processing. Data
E N D
Semantic Streams: a Framework for Composable Semantic Interpretation of Sensor Data Kamin Whitehouse UC Berkeley EWSN, Feb 13, 2006 Joint with Feng Zhao and Jie Liu, Microsoft Research
fact fact fact fact Data Processing Data Processing fact Data Processing Data Processing Data Processing Motivation • Imaging that sensors cover the globe • Can we automatically query for world facts? • No: each fact is an interpretation of data • Processing must consider • Sensor context • Sensor fusion • Data formats • Calibration • Signal transforms • Etc. World Sensor DB
Fact: empty space Space Inference Vehicle Inference Size Inference Semantic Streams Fact: vehicle • Goal: to allow direct querying of facts • Example query: “Is a vehicle in the parking lot” • Instantiates a graph of inference units to derive the desired fact • Output is a stream of all vehicles detected Sensor.data=72 Sensor.data=56 Sensor.data=98 obj.size=23 obj.size=23 Sensor.data=49 obj.type=vehicle
Usage Model • Fixed Sensor infrastructure • Many simultaneous, unrelated users • Short-term queries repeatedly over long periods • Queries are often similar (though not identical) • When programmer poses new query, system will use existing sensors and inference units, if possible. • Otherwise, system may give actionable error messages, • need to add 2 more sensors in area XYZ • need to add new inference unit to the system • Semantic values produced by infrastructure grows organically as it is used for new purposes
Complete System Planning time Mobile Application Query Processor Inference Graph Query User Run time Execution Engine MSTML Embedding Engine Sensors Inference Unit Instances Output Stream
george, jane, carA X, Y, Z, StudentA female(jane), parent(X,Y) parent(george,jane). male(george). father(X) :- parent(X,Y),male(X). male(X). > X = george father(X). > X = george father(jane). > false Constants Variables Predicates Facts Rules Queries Query processing Background: Prolog and FOL
sensor(magnetometer, [[60,0,0][70,10,10]]). sensor(camera, [[40,0,0][55,15,15]]). sensor(breakBeam, [[10,0,0][12,10,2]]). inference( speedDetector, needs( sensor(magnetometer, R) ), creates( stream(X), isa(X,object), property(X,T,time), property(X,R,region), property(X,S,speed) ) ). Sensors are declared as logical facts All regions are appx’d by 3D cubes Inference units are logical rules Antecedents: the fact streams that it needs Consequents: the fact streams that it creates Spatial relationship encoded in variable name Markup Language
subregion( A, B ) inference(speedDetector, needs( sensor(magnetometer, R) ), creates( stream(X), isa(X,object), property(X,T,time), property(X,R2,region), subregion(R2,R), property(X,S,speed) ) ). More sophisticated spatial relationships Subregions Sensor coverage (R) Queried area (R2) Stream Relationships
inference( speedDetector, needs( sensor(breakBeam, R1), sensor(breakBeam, R2), sensor(breakBeam, R3), subregion(R1,R), subregion(R2,R), subregion(R3,R), \+ intersecttion(_,R1,R2), \+ intersecttion(_,R1,R3), \+ intersecttion(_,R2,R3) ), creates( stream(X), isa(X,object), property(X,T,time), property(X,R,region) ) ). More sophisticated spatial relationships Subregions Non-intersection Queried area Sensor coverage Stream Relationships
inference( vehicleDetector, needs( sensor(magnetometer, R), stream(X), isa(X,object), property(X,S,speed) ), creates( stream(X), isa(X,vehicle) ) ). More sophisticated spatial relationships Subregions Non-intersection Stream identity Stream Relationships
Stream(X), Isa(X,vehicle) Vehicle Inference stream(X), property(X,speed) Sensor(mag,…) stream(Y), property(Y,speed) Speed Inference Sensor1 Sensor2 Sensor3 Query processing isa(A,vehicle) Region(A,[[10…]]) • Choose first predicate in query • Search KB for sensors that match • Search output of inference units for streams that match • Add new input streams to query • Back to step 1
Query processing isa(A,vehicle) Region(A,[[10…]]) • Actionable Error Messages • When missing inference unit • When missing sensor Stream(X), Isa(vehicle,X) Vehicle Inference stream(X), property(X,speed) Sensor(mag,…) stream(Y), property(Y,speed) Speed Inference Sensor1 Sensor2 Sensor3
stream(Y), property(Y,speed) Speed Inference Camera Query processing isa(A,vehicle) Region(A,[[10…]]) • When too many choices • Multiple graphs provide logically equivalent results Stream(X), Isa(vehicle,X) Vehicle Inference stream(X), property(X,speed) Sensor(mag,…) stream(Y), property(Y,speed) Speed Inference Sensor1 Sensor2 Sensor3
subregion( A, B ) inference(speedDetector, needs( sensor(camera, R) ), creates( stream(X), isa(X,object), property(X,T,time), property(X,R2,region), property(X,S,speed), property(X,C,confidence), {C > 99}, property(X,L,latency), {L < 450} ) ) . Inference unit may specify QoS of output Confidence Latency Quality of Service Constraints
subregion( A, B ) inference(speedDetector, needs( sensor(breakBeam, R1) ), sensor(breakBeam, R2) ), sensor(breakBeam, R3) ), creates( stream(X), isa(X,object), property(X,T,time), property(X,R2,region), property(X,S,speed) ) ). property(X,C,confidence), {C > 80}, property(X,L,latency), {L < 75} ) ) . Inference unit may specify QoS of output Confidence Latency Quality of Service Constraints
subregion( A, B ) inference(vehicleDetector, needs( sensor(magnetometer, R1), stream(X), property(X,S,speed), property(X,C2,confidence), property(X,L2,latency), creates( stream(X), isa(X,vehicle), {C > 0.9 * C2}, {L = L2 + 125} ) ). Inference unit may specify QoS of output Confidence Latency May be function of input QoS Quality of Service Constraints
Query processing isa(A,vehicle) Region(A,[[10…]]) {C>70, L <300} • Query can declare QoS parameters to create ordering of inference graphs Stream(X), Isa(vehicle,X) Vehicle Inference stream(X), property(X,speed) Sensor(mag,…) stream(Y), property(Y,speed) stream(Y), property(Y,speed) Size Inference Size Inference Sensor1 Sensor2 Sensor3 Camera
Query and Inference Graph isa(Y,histogram),property(Y,T,value),property(X,T,time), isa(X,vehicle),region(X,R,[[10,10,0][40,30,12]]), Isa(Z,photo),property(Z,X,triggerStream) Histogram Service Photo Service Vehicle Inference Size Inference Speed Inference Direction Inference Camera Break Beams Magnetometers
Final Application Break beam plot Camera image Magnetometer plot Micro Server Camera Server Report (histogram)
Conclusion • Semantic Streams • Infers facts from data • Intended for sensor infrastructure • Can select inference graph based on QoS constraints • Limitations • Must be a large supply of inference units • Stream operators are difficult to program • Different programming language/execution model • Programmer must deal with temporal values, implement appropriate buffering, etc.
Future Work: Streaming KB’s Relational Database : Knowledge Base :: Streaming Database : Streaming KB Logical rules: c(X) :- a(x),b(x). Operate on Facts SQL operators: Select, Join, Max Operate on Tables Infinite tables Infinite facts