1 / 12

Plasmids

Plasmids. Small supplemental circles of DNA 5000 - 20,000 base pairs self-replicating carry extra genes 2-30 genes genes for antibiotic resistance can be exchanged between bacteria Conjugation Transformation transduction. transformed bacteria. gene from other organism.

Download Presentation

Plasmids

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Plasmids • Small supplemental circles of DNA • 5000 - 20,000 base pairs • self-replicating • carry extra genes • 2-30 genes • genes for antibiotic resistance • can be exchanged between bacteria • Conjugation • Transformation • transduction

  2. transformedbacteria gene fromother organism recombinantplasmid cut DNA vector plasmid How can plasmids help us? • A way to get genes into bacteria easily • insert new gene into plasmid • insert plasmid into bacteria = vector • bacteria now expresses new gene • bacteria make new protein + glue DNA

  3. Biotechnology • Plasmids used to insert new genes into bacteria cut DNA gene we want like what? …insulin …HGH …lactase cut plasmid DNA ligase insert “gene we want” into plasmid...“glue” together recombinant plasmid

  4. How do we cut DNA? • Restriction enzymes • restriction endonucleases • discovered in 1960s • evolved in bacteria to cut up foreign DNA • “restrict” the action of the attacking organism • protection against viruses & other bacteria • bacteria protect their own DNA by methylation & by not using the base sequences recognized by the enzymes in their own DNA 

  5. CTG|AATTCCG GACTTAA|GGC Restriction enzymes Madam I’m Adam racecar • Action of enzyme • cut DNA at specific sequences • restriction site • symmetrical “palindrome” • produces protruding ends • sticky ends • will bind to any complementary DNA • Many different enzymes • named after organism they are found in • EcoRI, HindIII, BamHI, SmaI  CTGAATTCCG GACTTAAGGC 

  6. TTGTAACGAATTCTACGAATGGTTACATCGCCGAATTCACGCTT AACATTGCTTAAGATGCTTACCAATGTAGCGGCTTAAGTGCGAA AATTCTACGAATGGTTACATCGCCG GATGCTTACCAATGTAGCGGCTTAA isolated gene sticky ends cut sites chromosome want to add gene to AATGGTTACTTGTAACG AATTCTACGATCGCCGATTCAACGCTT TTACCAATGAACATTGCTTAA GATGCTAGCGGCTAAGTTGCGAA sticky ends stick together chromosome with new gene added TAACGAATTCTACGAATGGTTACATCGCCGAATTCTACGATCCATTGCTTAAGATGCTTACCAATGTAGCGGCTTAAGATGCTAGC Sticky ends help glue genes together cut sites gene you want cut sites Recombinant DNA molecule DNA ligase joins the strands

  7. Copy (& Read) DNA • Transformation • insert recombinant plasmid into bacteria • grow recombinant bacteria in agar cultures • bacteria make lots of copies of plasmid • “cloning” the plasmid • production of many copies of inserted gene • production of “new” protein • transformed phenotype DNA  RNA  protein  trait

  8. transformedbacteria gene fromother organism recombinantplasmid + vector plasmid growbacteria harvest (purify)protein Grow bacteria…make more human insulin

  9. Engineered plasmids • Building custom plasmids • restriction enzyme sites • antibiotic resistance genes as a selectable marker EcoRI BamHI HindIII restriction sites • Selectable marker • antibiotic resistance gene on plasmid • ampicillin resistance • selecting for successful transformation • successful uptake of recombinant plasmid plasmid ori ampresistance

  10. Selection for plasmid uptake • Antibiotic becomes a selecting agent • only bacteria with the plasmid will grow on antibiotic (ampicillin) plate only transformedbacteria grow all bacteria grow a a a a a a a a a a a a a a a a a LB plate LB/amp plate cloning

  11. insertedgeneof interest brokenLacZ gene X lactose  white color recombinantplasmid amp resistance Need to screen plasmids • Need to make sure bacteria have recombinant plasmid restriction sites EcoRI all in LacZ gene BamHI HindIII LacZ gene lactose  blue color plasmid amp resistance origin ofreplication

  12. Screening for recombinant plasmid • Bacteria take up recombinant plasmid • Non-functional LacZ gene • Bacteria stay white color • Bacteria take up plasmid • Functional LacZ gene • Bacteria make blue color Which coloniesdo we want?

More Related