1 / 9

Derivera Polynom

Derivera Polynom. We have looked many times at the graph f(x)=x 2 .

rose-dudley
Download Presentation

Derivera Polynom

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Derivera Polynom Wehavelookedmanytimes at the graph f(x)=x2. A tangent is a linewhich touches a curve at onepointonly. In the graph f(x) = x2 you cansee a tangent at the point (1;1). You coulddraw a tangent at (2;4) to find the gradient where x=2. Note that f(2) = x2 = 4 The gradient at anypoint on f(x) is given by the gradient (lutning) of the tangent to that point.

  2. Derivera Polynom The gradient (lutning) at anypoint on f(x) is given by the gradient (lutning) of the tangent to that point. Wedo not need to draw the tangent ourselvesifweknow f(x) in order to find the gradient (lutning).

  3. Derivera Polynom Ifwedraw tangents at (1;1), (2;4); (3;9) and (4;16) trust mewhen I tell you that you willdiscover the resultsbelow!

  4. Derivera Polynom Can you see a patternbetween x and f’(x) for f(x)=x2?

  5. Derivera Polynom If f(x) = x2 then f’(x) = 2x. NOTE: WE will PROVE this later in the term as the syllabussayswe must do. If f(x) = x3 then f’(x) = 3x2 If f(x) = x4 – 2x2then f’(x) = 4x3 – 4x Can you see the patternyet? (Remember that 4x=4x1)

  6. Derivera Polynom Here is the rule! If f(x) = axn f’(x) = naxn-1 Example f(x) = 3x6 a=3, n=6 so f’(x) = 3.6x6-1  f’(x) = 18x5 Think of the rule as 'multiply by the index, then reduce the index by 1'.

  7. Try These For the followingfunctions f(x), find f’(x) f(x) = x2+7x f(x) = r2 f(x) = 16x3 – 4x2 + 2x d) f(x) = 3x(4x + 2) Think of the rule as 'multiply by the index, then reduce the index by 1'.

  8. Answers f’(x) = 2x+7 f’(x) = 2 r f’(x) = 48x2 – 8x + 2 f’(x) = 24x + 6 Think of the rule as 'multiply by the index, then reduce the index by 1'.

  9. OtherImportantFacts What is f’(x) if f(x) = x3 + x2 – 10? Write f(x) as x3 + x2 – 10x0 since 100 = 1 f’(x) = 3x2 + 2x NOTE: f’(k) = 0 where k is anynumber, for example, 25.

More Related