1 / 73

Hypervalent Iodine Reagents in Organic Synthesis

Hypervalent Iodine Reagents in Organic Synthesis. Andrew T. Parsons March 23, 2007. Outline. Background Iodine(III) reagents Iodine(V) reagents Conclusions. Hypervalent Iodine: An Introduction.

rose-tate
Download Presentation

Hypervalent Iodine Reagents in Organic Synthesis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Hypervalent Iodine Reagents in Organic Synthesis Andrew T. Parsons March 23, 2007

  2. Outline • Background • Iodine(III) reagents • Iodine(V) reagents • Conclusions

  3. Hypervalent Iodine: An Introduction • Hypervalent iodine: Species that exceed eight electrons in the valence shell, typically IIII and IV • Can accommodate up to 12 valence electrons: • Species with 10 valence electrons are more common: Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2002,102, 2523-2584.

  4. Hypervalent Iodine: A Brief History • Both Iodine(III) and (V) compounds were first prepared by Willgerodt in 1886 and 1900, respectively • Iodine(III) compounds are referred to as λ3-iodanes • Iodine(V) compounds are referred to as λ5-iodanes, periodanes, or periodinanes Stang, P. J.; Zhdankin, V. V. Chem. Rev. 1996,96, 1123-1178.

  5. Structural Characteristics • λ3-iodanes: • λ5-iodanes: Stang, P. J.; Zhdankin, V. V. Chem. Rev. 1996,96, 1123-1178.

  6. Outline • Background • Iodine(III) reagents • Iodine(V) reagents • Conclusions

  7. Preparation of IIII Reagents • Most reagents are prepared directly from iodobenzene: Varvoglis, A. Tetrahedron 1997,53, 1179-1255.

  8. Reactions of Iodine(III) Compounds • Reactivity is driven by the electrophilic nature of IIII • Typical reactions proceed through an initial nucleophilic attack of the iodine center: • PhIX is an excellent leaving group, on the order of 106 better than –OTf, and therefore substitutions and reductive eliminations are prevalent

  9. Reactions of Iodine(III) Compounds: Oxygenations

  10. Reactions of Iodine(III) Compounds: Oxygenations • Iodosylbenzene, PhIO: • Useful for a number of different oxidations • Exists as a polymer, which is activated through depolymerization when treated with alcoholic solvents and base • Can also be activated in the presence of a Lewis acid or Br - catalyst • The active IIII species, PhI(OMe)2, can also be generated from PhI(OAc)2 Moriarty, R. M.; Hu, H.; Gupta, S. C. Tetrahedron Lett. 1981,22, 1283. Moriarty, R. M. J. Org. Chem. 2005,70, 2893-2903.

  11. Oxidations with Iodosylbenzene • Useful in the α-hydroxylation of ketones • α-Hydroxylation of ketones can be carried out using CrO3, typically with higher yields • PhIO is a non-toxic alternative to CrVI Moriarty, R. M.; Gupta, S. C.; Hu, H.; Berenschot, D. R.; White, K. B. J. Am. Chem. Soc. 1981,103, 686-688. Moriarty, R. M.; Hu, H.; Gupta, S. C. Tetrahedron Lett. 1981,22, 1283.

  12. Oxidations with Iodosylbenzene Moriarty, R. M.; Hu, H.; Gupta, S. C. Tetrahedron Lett. 1981,22, 1283.

  13. Mechanism of α-Hydroxylation Moriarty, R. M. J. Org. Chem. 2005,70, 2893-2903.

  14. Applications in Total Synthesis • Synthesis of (-)-Xialenon • Carrying out this transformation using a Rubottom oxidation provided a dr of 3:1 Hodgson, D. M.; Galano, J.-M.; Christlieb, M. Tetrahedron 2003,59, 9719-9728. Rubottom, G.M.; Gruber, J.M. J. Org. Chem. 1978, 43, 1599-1602

  15. Catalytic α-Acetoxylation of Ketones Ochiai, M.; Takeuchi, Y.; Katayama, T.; Sueda, T.; Miyamoto, K. J. Am. Chem. Soc. 2005,127, 12244-12245.

  16. Catalytic Cycle Ochiai, M.; Takeuchi, Y.; Katayama, T.; Sueda, T.; Miyamoto, K. J. Am. Chem. Soc. 2005,127, 12244-12245.

  17. Oxidative Rearrangements of Aryl Alkenes • Koser’s reagent induces an oxidative rearrangement of aryl alkenes to afford α-aryl ketones Justik, M. W.; Koser, G. F. Tetrahedron Lett. 2004,45, 6159-6163.

  18. Oxidative Rearrangements of Aryl Alkenes Justik, M. W.; Koser, G. F. Tetrahedron Lett. 2004,45, 6159-6163.

  19. Oxidative Rearrangements of Aryl Alkenes Justik, M. W.; Koser, G. F. Tetrahedron Lett. 2004,45, 6159-6163.

  20. Oxidative Cleavage of Alkenes • Works well for electron-rich olefins • Reaction times typically 0.5-5 h • Safer than ozonolysis, cheaper than transition-metal reagents Miyamoto, K.; Tada, N.; Ochiai, M. J. Am. Chem. Soc. 2007,129, 2772-2773.

  21. Oxidative Cleavage of Alkenes Miyamoto, K.; Tada, N.; Ochiai, M. J. Am. Chem. Soc. 2007,129, 2772-2773.

  22. Oxidative Cleavage of Alkenes • Suggests that an epoxidation precedes cleavage Miyamoto, K.; Tada, N.; Ochiai, M. J. Am. Chem. Soc. 2007,129, 2772-2773. Moriarty, R. M.; Gupta, S. C.; Hu, H.; Berenschot, D. R.; White, K. B. J. Am. Chem. Soc. 1981,103, 686-688.

  23. Oxidative Cleavage of Alkenes • Suggests that an epoxidation precedes cleavage Miyamoto, K.; Tada, N.; Ochiai, M. J. Am. Chem. Soc. 2007,129, 2772-2773.

  24. Reactions of Iodine(III) Compounds: Oxidation of Phenols • Previously: Stang, P. J.; Zhdankin, V. V. Chem. Rev. 1996,96, 1123-1178.

  25. Application to Spirocyclizations • Tether a nucleophile to the phenol: • Possible applications in natural product synthesis

  26. Spirocyclization of Phenols: Early Studies Tamura, Y.; Yakura, T.; Haruta, J.-I.; Kita, Y. J. Org. Chem. 1987,52, 3927-3930.

  27. Mechanism Tamura, Y.; Yakura, T.; Haruta, J.-I.; Kita, Y. J. Org. Chem. 1987,52, 3927-3930.

  28. Current Standard: Catalytic Spirocyclizations Dohi, T.; Maruyama, A.; Yoshimura, M.; Morimoto, K.; Tohma, H.; Kita, Y. Angew. Chem. Int. Ed. 2005,44, 6192-6196.

  29. Catalytic Cycle Dohi, T.; Maruyama, A.; Yoshimura, M.; Morimoto, K.; Tohma, H.; Kita, Y. Angew. Chem. Int. Ed. 2005,44, 6192-6196.

  30. Applications in Total Synthesis • Synthesis of Aranorosin: Wipf, P.; Kim, Y.; Fritch, P. C. J. Org. Chem. 1993,58, 7195-7203.

  31. PhI(OCOCF3)2-Promoted Formation of Lactols Kita, Y.; Matsuda, S.; Fujii, E.; Horai, M.; Hata, K.; Fujioka, H. Angew. Chem. Int. Ed. 2005,44, 5857-5860.

  32. PhI(OCOCF3)2-Promoted Formation of Lactols Kita, Y.; Matsuda, S.; Fujii, E.; Horai, M.; Hata, K.; Fujioka, H. Angew. Chem. Int. Ed. 2005,44, 5857-5860.

  33. Applications in Total Synthesis • Synthesis of (+)-Tanikolide Kita, Y.; Matsuda, S.; Fujii, E.; Horai, M.; Hata, K.; Fujioka, H. Angew. Chem. Int. Ed. 2005,44, 5857-5860.

  34. Applications in Total Synthesis • Synthesis of (+)-Tanikolide Kita, Y.; Matsuda, S.; Fujii, E.; Horai, M.; Hata, K.; Fujioka, H. Angew. Chem. Int. Ed. 2005,44, 5857-5860.

  35. Carbon-Carbon Bond Forming Reactions

  36. Carbon-Carbon Bond Forming Reactions: Cyclizations with PhI(OCOR)2 • PhI(OCOR)2 reagents have been shown to promote attack by carbon nucleophiles: Kita, Y.; Takada, T.; Ibaraki, M.; Gyoten, M.; Mihara, S.; Fujita, S.; Tohma, H. J. Org. Chem. 1996,61, 223-227.

  37. C-C Bond Forming Cyclizations Kita, Y.; Takada, T.; Ibaraki, M.; Gyoten, M.; Mihara, S.; Fujita, S.; Tohma, H. J. Org. Chem. 1996,61, 223-227.

  38. Applications in Total Synthesis • Synthesis of (±)-Stepharine Honda, T.; Shigehisa, H. Org. Lett. 2006,8, 657-659.

  39. C-C Bond Forming Reactions: C-H Activation Kalyani, D.; Deprez, N.; Desai, L. V.; Sanford, M.S. J. Am. Chem. Soc. 2005,127, 7330-7331. Deprez, N.; Kalyani, D.; Krause, A.; Sanford, M. S. J. Am. Chem. Soc. 2006,128, 4972-4973.

  40. C-C Bond Forming Reactions: C-H Activation Kalyani, D.; Deprez, N.; Desai, L. V.; Sanford, M.S. J. Am. Chem. Soc. 2005,127, 7330-7331. Deprez, N.; Kalyani, D.; Krause, A.; Sanford, M. S. J. Am. Chem. Soc. 2006,128, 4972-4973.

  41. Mechanism of C-H Activation Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004,126, 2300-2301. Kalyani, D.; Deprez, N.; Desai, L. V.; Sanford, M.S. J. Am. Chem. Soc. 2005,127, 7330-7331.

  42. Outline • Background • Iodine(III) reagents • Iodine(V) reagents • Conclusions

  43. Preparation of IV Reagents • Caution: There have been reports of violent explosions occurring upon heating of these reagents to >200 °C Boeckman, Jr., R.K.; Shao, P.; Mullins, J.J. Org. Synth. 2000, 77, 141-152. Frigerio, M.; Santagostino, M.; Sputore, S. J. Org. Chem. 1999, 64, 4537-4538.

  44. Oxidations of Alcohols: A Brief Overview • DMP and IBX have been widely used for the mild oxidation of alcohols to ketones and aldehydes: Zoller, T.; Breuilles, P.; Uguen, D. Tetrahedron Lett. 1999,40, 6253-6256. Myers, A. G.; Zhong, B.; Movassaghi, M.; Kung, D. W.; Kwon, S. Tetrahedron Lett. 2000,41, 1359-1362. Smith, A.B., III; Kanoh, N.; Ishiyama, H.; Minakawa, N.; Rainier, J.D.; Hartz, R.A.; Cho, Y.S.; Moser, W.H. J. Am. Chem. Soc.2003, 125, 8228-8237.

  45. Dehydrogenation of Saturated Aldehydes and Ketones with IBX Nicolaou, K. C.; Zhong, Y.-L.; Baran, P. S. J. Am. Chem. Soc. 2000,122, 7596-7597.

  46. Dehydrogenation of Saturated Aldehydes and Ketones with IBX Nicolaou, K. C.; Zhong, Y.-L.; Baran, P. S. J. Am. Chem. Soc. 2000,122, 7596-7597.

  47. Mechanism of Dehydrogenation by IBX • Single electron transfer is likely operative: Nicolaou, K. C.; Montagnon, T.; Baran, P. S.; Zhong, Y.-L. J. Am. Chem. Soc. 2002,124, 2245-2258.

  48. Applications in Total Synthesis • Efforts toward the synthesis of Phomoidride B Ohmori, N. J. Chem. Soc., Perkin Trans. 1 2002, 755-767.

  49. Tandem Conjugate Addition/Dehydrogenation with IBX Nicolaou, K. C.; Gray, D. L. F.; Montagnon, T.; Harrison, S. T. Angew. Chem. Int. Ed. 2002,41, 996-1000.

  50. Tandem Conjugate Addition/Dehydrogenation with IBX Nicolaou, K. C.; Gray, D. L. F.; Montagnon, T.; Harrison, S. T. Angew. Chem. Int. Ed. 2002,41, 996-1000.

More Related