1 / 28

Potentielle forklarende variabler for udbytte i forskellige miljøer Hans Pinnschmidt

Potentielle forklarende variabler for udbytte i forskellige miljøer Hans Pinnschmidt Danmarks JorgbrugsForskning Afdeling for Plantebeskyttelse Forskning Center Flakkebjerg 4200 Slagelse. hans.pinnschmidt@agrsci.dk. Background

rossa
Download Presentation

Potentielle forklarende variabler for udbytte i forskellige miljøer Hans Pinnschmidt

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Potentielle forklarende variabler for udbytte i forskellige miljøer Hans Pinnschmidt Danmarks JorgbrugsForskning Afdeling for Plantebeskyttelse Forskning Center Flakkebjerg 4200 Slagelse hans.pinnschmidt@agrsci.dk

  2. Background BAROF WP1 data: multivariate measurements on 86 spring barley genotypes in 10 environments (2 years: 2002 & 2003, 3 sites: Flakkebjerg, Foulum, Jyndevad, 2 production systems: ecological & conventional). hans.pinnschmidt@agrsci.dk

  3. factors: genotypeenvironment G1 E1 . . . . . . . Ej . . Gi variables: X1(i,j) ... Xm(i,j) parameters Xm(i)1 ... Xm(i)p Xm(j)1 ... Xm(j)p • variables: • yield • 1000 grain weight • grain protein contents • culm length • date of emergence • growth duration • mildew severity • rust severity • scald severity • net blotch severity • disease diversity • weed cover • broken panicles & culms • lodging • parameters: • raw data • mean/median/max./min. • rank/relative values • main effects • interaction slopes • raw data adjusted for E/G main effects/slopes (residuals) • IPCA scores • SD/variance } derive information on general properties, specificity, stability/variability hans.pinnschmidt@agrsci.dk

  4. Objectives Multivariate characterisation of genotypes with emphasis on yield-related properties. hans.pinnschmidt@agrsci.dk

  5. Statistical methods • Non-linear Canonical Correlation Analysis (NCCA): an optimal scaling procedure suited for handling multivariate data of any kind of scaling (numerical/quantitative, ordinal, nominal). • Multiple Regression Analysis (MRA) hans.pinnschmidt@agrsci.dk

  6. Non-linear Canonical Correlation Analysis (NCCA) data treatment: quantitative variables (vm) were converted into ordinal variables with n categories (v11 ... v1n, ..., vm1 ... vmn). hans.pinnschmidt@agrsci.dk

  7. Characterisation of environments • based on data adjusted for • G main effects (= residuals) hans.pinnschmidt@agrsci.dk

  8. Flakkebjerg 2002: high rust & 1000 grain weight; late sowing Foulum 2002 conventional & Jyndevad 2003 ecological: high mildew & lodging; low yield % net blotch Jyndevad 2002 ecological: low yield, 1000 grain weight, weed infestation, protein content Flakkebjerg 2003: high yield, net blotch & panicle breakage; low mildew & lodging hans.pinnschmidt@agrsci.dk

  9. Characterisation of genotypes • based on data adjusted for • E main effects (= residuals) hans.pinnschmidt@agrsci.dk

  10. high yield & 1000 grain weight; low protein content & lodging high mildew; low net blotch & disease diversity low yield & 1000 grain weight dimension 5 (sq. root) low mildew dimension 1 (sq. root) hans.pinnschmidt@agrsci.dk

  11. Characterisation of genotypes in • individual environments based on: • actual yield data • disease main effects (ME) of G’s • environmental disease variability (SD) of G’s (= standard deviation of E adjusted data) hans.pinnschmidt@agrsci.dk

  12. Flakkebjerg 2003: high yield, net blotch & panicle breakage; low mildew & lodging hans.pinnschmidt@agrsci.dk

  13. Flakkebjerg 2003: high yield, net blotch & panicle breakage; low mildew & lodging high yield; low net blotch ME & SD short straw high rust ME & SD dimension 6 (sq. root) low yield; high net blotch ME & SD long straw dimension 4 (sq. root) hans.pinnschmidt@agrsci.dk

  14. Jyndevad 2002 ecological: low yield, 1000 grain weight, weed infestation, protein content Flakkebjerg 2003: high yield, net blotch & panicle breakage; low mildew & lodging Foulum 2002 conventional & Jyndevad 2003 ecological: high mildew & lodging; low yield & net blotch hans.pinnschmidt@agrsci.dk

  15. Jyndevad 2003 ecological: high mildew & lodging; low yield & net blotch high yield low mildew ME & SD dimension 5 (sq. root) low yield; high mildew & net blotch ME & SD dimension 1 (sq. root) hans.pinnschmidt@agrsci.dk

  16. Multiple Regression Analysis (MRA) • dependent variables: yield (actual, E-adj. G mean & SD) • independent variables: E-adj. G mean & SD of disease severity, weed infestation, growth duration, culm length • criteria: Pin/out = 0.05/0.10; Fin/out = 3,84/2.71; tolerance = 0.0001 hans.pinnschmidt@agrsci.dk

  17. Variables must pass both tolerance and minimum tolerance tests in order to enter and remain in a regression equation. Tolerance is the proportion of the variance of a variable in the equation that is not accounted for by other independent variables in the equation. The minimum tolerance of a variable not in the equation is the smallest tolerance any variable already in the equation would have if the variable being considered were included in the analysis. If a variable passes the tolerance criteria, it is eligible for inclusion based on the method in effect.

  18. hans.pinnschmidt@agrsci.dk Mean versus standard deviation of environment-adjusted yield of spring barley genotypes; BAROF 2002-2003

  19. hans.pinnschmidt@agrsci.dk

  20. hans.pinnschmidt@agrsci.dk Observed versus estimated mean environment-adjusted yield of spring barley genotypes; BAROF 2002-2003

  21. hans.pinnschmidt@agrsci.dk

  22. hans.pinnschmidt@agrsci.dk Observed versus estimated standard deviation of environment-adjusted yield of spring barley genotypes; BAROF 2002-2003

  23. Yield of spring barley genotypes versus main effect yield of the environment; BAROF 2002-2003 hans.pinnschmidt@agrsci.dk

  24. hans.pinnschmidt@agrsci.dk

  25. Yield of spring barley genotypes estimated based on yield main effect of environment and E-adjusted mean & standard deviation of genotype property variables (disease severity, weed infestation, culm length, growth duration); analysis across environments; BAROF 2002-2003 hans.pinnschmidt@agrsci.dk

  26. hans.pinnschmidt@agrsci.dk

  27. Yield of spring barley genotypes estimated based on E-adjusted mean & standard deviation of genotype property variables (disease severity, weed infestation, culm length, growth duration); analysis by environment; BAROF 2002-2003 hans.pinnschmidt@agrsci.dk

  28. Conclusions & outlook • NCCA: • “intuitive” method good for “visualising” the main features in multivariate data of various scales • useful for obtaining an overall synoptic orientation of G properties and E characteristics •  “soft systems approach” • MRA: •  “hard systems approach” • synoptic view neglected • Mildew & net blotch had highest yield-related effect, although not always functional (especially in MRA!) hans.pinnschmidt@agrsci.dk

More Related