1 / 18

Functional Programming Basics

Functional Programming Basics. Correctness > Clarity > Efficiency. Function Definition Equations ; Recursion Higher-order functions Function Application Computation by expression evaluation Choices : parameter passing Reliability Types Strong typing, Polymorphism, ADTs.

rowa
Download Presentation

Functional Programming Basics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Functional Programming Basics Correctness > Clarity > Efficiency L1FP

  2. Function Definition • Equations ; Recursion • Higher-order functions • Function Application • Computation by expression evaluation • Choices : parameter passing • Reliability • Types • Strong typing, Polymorphism, ADTs. • Garbage Collection L1FP

  3. Imperative Style vs Functional Style • Imperative programs • Description of WHAT is to be computed is inter-twined with HOW it is to be computed. • The latter involves organization of data and the sequencing of instructions. • Functional Programs • Separates WHAT from HOW. • The former is programmer’s responsibility; the latter is interpreter’s/compiler’s responsibility. L1FP

  4. Functional Style • Value to be computed: a + b + c • Imperative Style • Recipe for computing the value • Intermediate Code • T := a + b; T := T + c; • T := b + c; T := a + T; • Accumulator Machine • Load a; Add b; Add c; • Stack Machine • Push a; Push b; Add; Push c; Add; L1FP

  5. GCD : functional vs imperative fun gcd(m,n) = if m=0 then n else gcd(n mod m, m); function gcd(m,n: int) : int; var pm:int; begin while m<>0 do begin pm := m; m := n mod m; n := pm end; return n end; L1FP

  6. Pitfalls : Sequencing (define (factorial n) (define (iter prod counter) (if (> counter n) prod (iter (* counter prod) (+ counter 1) ) )) (iter 1 1) ) L1FP

  7. (define (factorial n) (let ((prod 1)(counter 1)) (define (iter) (if (> counter n) prod (begin (set! prod (* counter prod)) (set! counter (+ 1 counter)) (iter)) )) )) L1FP

  8. Function • A function ffrom domain A to co-domain B, denoted f : A -> B, is a map that associates with every element a in A, a unique element b in B, denoted f(a). • Cf. Relation, multi-valued function, partial function, … • In mathematics, the term “function” usually refers to a total function; in computer science, the term “function” usually refers to a partial function. L1FP

  9. Representation of functions • Intensional : Rule of calculation fun double n = 2 * n; fun double n = n + n; • Extensional : Behavioral (Table) • Equality: f = giff for all x: f(x) = g(x) L1FP

  10. Expression Evaluation : Reduction fun double x = x + x; double ( 3 * 2) double(6) (3*2) + (3*2) (3*2) + o 6 + 6 6 + (3 * 2) 6 + o Applicative-Order Normal-Order Lazy (call by value) (call by name) (call by need) L1FP

  11. In functional style, a variable stands for an arbitrary value, and is used to abbreviate an infinite collection of equations. 0 + 0 = 0 0 + 1 = 1 … for all x : 0 + x = x In imperative style, a variable is a location that can hold a value, and which can be changed through an assignment. x := x + 1; Functional variable can be viewed as assign-only- once imperative variable. Role of variable L1FP

  12. Referential Transparency • The only thing that matters about an expression is its value, and any sub-expression can be replaced by any other expression equal in value. • The value of an expression is independent of its position only provided we remain within the scopes of the definitions which apply to the names occurring in the expression. L1FP

  13. Examples let x = 5 in x + let x = 4 in x + x; val y = 2; val y = 6; var x : int; begin x := x + 2; x := x + 1; end; address of x value stored in location for x L1FP

  14. (x=2) /\ (x+y>2) (2+y>2) vs fun f (x : int) : int ; begin y := y + 1; return ( x + y) end; (y=0) /\ (z=0) /\ (f(y)=f(z)) = false (y=0) /\ (z=0) /\ (f(z)=f(z)) =/= (y=0) /\ (z=0) /\ (f(z)=1) L1FP

  15. Common sub-expression elimination is an “incorrect optimization” without referential transparency. • In functional style: E + E =let x = E in x + x • In imperative style: return (x++ + x++) =/= y := x++; return (y + y) • Parallel evaluation of sub-expressions possible with referential transparency. L1FP

  16. Strict vs Non-strict • A function is strict if it returns well-defined results only when the inputs are well-defined. • E.g., In C, “+” and “*” are strict, while “&&” and “||” are not. • E.g., In Ada, “and” and “or” are strict, while “and then” and “or else” are not. • E.g., constant functions are non-strict if called by name, but are strict if called by value. L1FP

  17. Benefits of Programming in a Functional Language • Convenient to code symbolic computations and list processing applications. • Automatic storage management • Improves program reliability. • Enhances programmer productivity. • Abstraction through higher-order functions and polymorphism. • Facilitates code reuse. • Ease of prototyping using interactive development environments. L1FP

  18. Summary Programming Languages Imperative Functional Logic C, Pascal Prolog Dynamically Typed (Meta-programming) Statically Typed (Type Inference/Reliable) LISP, Scheme Lazy Eval / Pure Eager Eval / Impure Haskell SML L1FP

More Related