1 / 24

Simulating Physics with Universal Computers

This article discusses Richard P. Feynman's concept of a universal quantum simulator and its implications for testing theoretical models. It also explores recent advancements in cold-atom conductivity and the control of quantum gases.

rowenaj
Download Presentation

Simulating Physics with Universal Computers

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. …Can physics be simulated by a universal computer? Richard P. Feynman, Int. J. Theor. Phys 21, 467 (1982) Richard P. Feynman realized that certain phenomena inQuantum Field Theory are well imitated by certainCondensed Matter systems… He thought that there should be a certain class of quantummechanical systems which would simulate any other system, a UNIVERSAL QUANTUM SIMULATOR that could serve as a quantum laboratory where the validityof several theoretical models may be tested. L. Fallani and M. Inguscio Controlling cold-atom conductivity Science 322 (5th December 2008)

  2. Absence of diffusion Ballistic expansion: =0 J=1 J=7 Absence of diffusion: G. Roati et al., Nature 453, 895 (2008) Ballistic expansionwith reduced velocity

  3. Disorder is beautiful

  4. Chiara Fort Marco Fattori Giovanni Modugno Giacomo Roati

  5. 39K: un gas con interazione tunabile

  6. Nuovo progetto: apparato sperimentale in costruzione Marco Fattori Ammesso al secondo step: Firb Futuro in Ricerca (INFN) ERC starting grant (INO-CNR) GIOVANNI MODUGNO - segue

  7. Nuovo progetto: apparato sperimentale in costruzione

  8. Giovanni Modugno Fenomeni a molti corpi con gas quantistici di atomi e molecole QUPOL – ERC Starting Grant MICRA – INFN EUROQUASAR ESF (CNR-INO) NAMEQUAM EU FP7 AQUTE EU FP7

  9. 100a0 time 1a0 Interferometria atomica con BECs intrappolati non interagenti Soppressione della decoerenza indotta dall’interazione M. Fattori, et al., PRL 100, 080405 (2008) M. Fattori, et al. PRL 101, 190405 (2008) • Vantaggi offerti • Lunghi tempi di interrogazione • Sensore estremamente compatto • Elevata risoluzione spaziale ~mm

  10. Nuovo progetto: interferometro atomico al limite Heisenberg Costruzione di un interferometro Mach-Zender spaziale, il cui funzionamento richiede l’uso di atomi non interagenti Particelle entangled usando l’interazione Perticelle scorrelate Ingresso beam splitter f shift di fase L R beam splitter misura Df~ 1/ (Limite Shot Noise) Df~ 1/N (Heisenberg limit)

  11. Federico Capasso

  12. Federico Capasso - Harvard FOTONICA al THz Joint venture Dip Fisica ed Astronomia – INO-CNR – LENS – Max Planck

  13. Leonardo Fallani, Jacopo Catani Cancio Pastor,, Giusfredi, De Natale Quantum information withytterbium New experimental system for laser cooling and trapping two-electron atomic ytterbium • Rich level structure (metastable states) • Several stable isotopes • Optical clocks technology Good candidate for quantum information processing with neutral atoms! • Funded by: • IIT – ENCORE Seed Project • EU FP7 – AQUTE Integrated Project • MAE – Progetto UVICOLS

  14. Quantum information withytterbium Easy encoding and long-term storage of quantum information in low-decoherence internal subspaces electronic qubits nuclear qubits clock transition: long coherence times purely nuclear spin (fermions): small sensitivity to stray fields decoupled from the electronic d.o.f.

  15. Quantum information withytterbium Quantum register with Yb atomstrapped in optical lattices High-res imaging + optical tweezing for addressing and manipulating qubits r/w addressability and manipulation atoms = qbits optical lattice Creation of entanglement between individually addressed qbits

  16. Quantum interfaces Hybrid systems for QIPC Connecting different quantum systems photons flying qubits atoms ions Yb+ Yb, Li, Rb scalable quantum registers long coherence times multi-particle entanglement fast gates

  17. Francesco Minardi (INO-CNR) Giacomo Lamporesi, Jacopo Catani Simulation of magnetic models 2 species of atoms in optical lattices mimick spin models: ferromagnets, antiferromagnets, supersolids... Optical lattices make low-dimensional and even mixed-dimensional systems Gas quantistici, U.O.S. Sesto Fiorentino

  18. Scattering in mixed dimensions with ultracold gases Scattering of particles living in different dimensions (2D/3D) Observed scattering resonances induced by mixed-dimensionality G. Lamporesi, J. Catani, G. Barontini, Y. Nishida, M. Inguscio, F. Minardi, submitted to Phys. Rev. Lett., arXiv 1002.0114 Gas quantistici, U.O.S. Sesto Fiorentino

  19. Entropy control of quantum gases Motivation:quantum simulations with degenerate atomic gases require very low entropy Idea:with two atomic gases (K, Rb) in thermal equilibrium, selective compression of one component (K) transfers entropy from the compressed to the uncompressed gas. Experimental signature:K atoms are driven to Bose-Einstein condensation regime in a reversible and controlled way J. Catani, G. Barontini, G. Lamporesi, F. Rabatti, G. Thalhammer, F. Minardi, S. Stringari, and M. Inguscio, Phys. Rev. Lett. 103, 140401 (2009) [viewpoint: D. Stamper-Kurn, Physics 2, 80 (2009)] Gas quantistici, U.O.S. Sesto Fiorentino

  20. Giacomo Roati

  21. STRATEGIE Finanziamenti Spazi Risorse umane

  22. Finanziamenti Europei: - Integrated Project SCALA (2008-2009) 170 kEuro - EuroQuam DQS (2007-2010), 100 kEuro Nazionali: - SQUATSuper (2007-2008), INFN, gruppo V, 30 kEuro

More Related