1 / 13

Section 1.6 Powers, Polynomials, and Rational Functions

Section 1.6 Powers, Polynomials, and Rational Functions. Often in this class we will deal with functions of the form Functions of this form are called power functions Notice the variable is being raised to an exponent

roxy
Download Presentation

Section 1.6 Powers, Polynomials, and Rational Functions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Section 1.6Powers, Polynomials, and Rational Functions

  2. Often in this class we will deal with functions of the form • Functions of this form are called power functions • Notice the variable is being raised to an exponent • Contrast this with an exponential function where the variable is in the exponent

  3. Which of the following are power functions and identify the k and the n (recall )

  4. Power functions can be odd, even or neither • How can we decide? • What about the following? • What about the end behavior of a power function versus an exponential • Which grows faster?

  5. What happens if we add or subtract power functions? • A polynomial is a sum (or difference) of power functions whose exponents are nonnegative integers • What determines the degree of a polynomial? • For example • What is the leading term in this polynomial?

  6. We have the general form of a polynomial which can be written as • Where n is a positive integer called the degree of p • Each power function is called a term • The constants an , an-1,… a0,are called coefficients • The term a0 is called the constant term • The term anxn is called the leading term

  7. End Behavior The shape of the graph of a polynomial function depends on the degree. Degree EVENDegree ODD an>0 an<0 an>0 an<0

  8. What are the zeros (or roots) of a polynomial? • Where the graph hits the x-axis • The input(s) that make the polynomial equal to 0 • How can we find zeros of a polynomial? • For example, what are the zeros of • Notice this polynomial is in its factored form • It is written as a product of its linear factors • A polynomial of degree n can have at most n real zeros

  9. Behavior of Polynomials x x What is the significance of this point? What is the significance of this point? What behavior do you notice at the zeros of these functions?

  10. When a polynomial, p, has a repeated linear factor, then it has a multiple root • If the factor (x - k) is repeated an even number of times, the graph does not cross the x-axis at x = k. It ‘bounces’ off. The higher the (even) exponent, the flatter the graph appears around x = k. • If the factor (x - k) is repeated an odd number of times, the graph does cross the x-axis at x = k. It appears to flatten out. The higher the (odd) exponent, the flatter it appears around x = k.

  11. If r can be written as the ratio of polynomial functions p(x) and q(x), then r is called a rational function • The long-run behavior is determined by the leading terms of both p and q • These functions often have horizontal asymptotes which define their long run behavior

  12. We have three cases • The degree of p < the degree of q • The horizontal asymptote is the line y = 0 • The degree of p > the degree of q • There is no horizontal asymptote • The degree of p = the degree of q • The horizontal asymptote is the ratio of the coefficients of the leading terms of p and q

  13. Let’s consider the following functions • How do we find their x-intercepts? • What are they? • What happens if the denominators equal 0? • What are their horizontal asymptotes?

More Related