1 / 1

zy numbers ( À Áwith different r and also all triangular fuz-

Author's personal copy Expert Systems with Applications 39 (2012) 690–695 Contents lists available at SciVerse ScienceDirect Expert Systems with Applications journal homepage: www.elsevier.com/locate/eswa An approach for ranking of fuzzy numbers

roy
Download Presentation

zy numbers ( À Áwith different r and also all triangular fuz-

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Author'spersonalcopy ExpertSystemswithApplications39(2012)690–695 ContentslistsavailableatSciVerseScienceDirect ExpertSystemswithApplications journalhomepage:www.elsevier.com/locate/eswa Anapproachforrankingoffuzzynumbers R.Ezzatia,⇑,T.Allahviranloob,S.Khezerlooa,M.Khezerloob a b DepartmentofMathematics,KarajBranch,IslamicAzadUniversity,Karaj,Iran DepartmentofMathematics,ScienceandResearchBranch,IslamicAzadUniversity,Tehran,Iran article info abstract Inordertorankallfuzzynumbers,wemodifythemethodof‘‘anewapproachforrankingoftrapezoidal fuzzynumbers’’byAbbasbandyandHajjari(2009).Ourproposedmethodisusedforrankingsymmetric fuzzynumbers.Theadvantageofthismethodisillustratedbysomecomparativeexamples. Ó2011ElsevierLtd.Allrightsreserved. 2.Preliminaries Keywords: Rankingoffuzzynumbers Parametricformoffuzzynumber Magnitudeoffuzzynumber 1.Introduction Inmanyapplications,rankingoffuzzynumbersisanimportant andprerequisiteprocedurefordecisionmakers.Firstly,In1976, Jain(1976,1977)proposedamethodforrankingoffuzzynumbers, thenalargeofvarietyofmethodshavebeendevelopedtorankfuz- zynumbers.WangandKerre(2001a,2001b)classifiedtheordering methodintothreecategoriesandproposedsevenreasonableprop- ertiestoevaluatetheorderingmethod.In2007,AsadyandZendeh- nam(2007)proposedanewmethodbasedon‘‘distance minimizing’’andthenin2009,AbbasbandyandHajjari(2009)pro- posedanewmethodforrankingoftrapezoidalfuzzynumbersand showedthattheirnewmethodovercometosomedrawbacksof distanceminimizing.Butbytheirnewmethod,alltrapezoidalfuz- x0,y0,r,r) zynumbersx0þ2y0;r;rwithdifferentrarethesameorder. Therearevariousdefinitionsfortheconceptoffuzzynumbers (Dubois&Prade,1982;Gal,2000;Goetschel&Voxman,1986) Definition2.1(GoetschelandVoxman,1986).Afuzzynumberis afuzzysetlikeu:R?[0,1]satisfyingthefollowingproperties: (i)uisuppersemi-continuous, (ii)u(x)=0outsideofinterval[0,1], (iii)therearerealnumbersa,b,canddsuchthata6b6c6d and (a)u(x)ismonotonicincreasingon[a,b], (b)u(x)ismonotonicdecreasingon[c,d], (c)u(x)=1,b6x6c, andthemembershipfunctionucanbeexpressas zynumbers(ÀÁwithdifferentrandalsoalltriangularfuz- Forexample,considerthetwofuzzynumbers,A=(3,2,2)and B=(3,1,1),seeFig.1,fromChuandTsao(2002). Mag(A)=Mag(B)=3,i.e.A$BandalsoconsiderA=(À1,1,5,5) andB=(0,2,2)thenMag(A)=Mag(B)=0soA$B,seeFig.2. However,itisclearthattheresultoforderingisnotreasonable 8 > >uRðxÞ; >uLðxÞ; a6x6b; b6x6c; c6x6d; otherwise; > <1; uðxÞ¼ > : 0; andfuzzynumbersAandBdonotbelongtoanequivalenceclass. Inthispaper,wemodifytheabovementionedmethodinorder torankallfuzzynumbersandovercometoaboveunreasonable results.Thestructureofthispaperisorganizedasfollows:InSec- tion2webringsomebasicdefinitionsandresultsonfuzzynum- bers.InSection3weproposenewmethodforrankingoffuzzy numbers.Comparingtheproposedrankingmethodwithsome otherapproaches,somenumericalexamplesareprovidedin Section4.Finally,conclusionsaredrowninSection5. ⇑Correspondingauthor.Tel.:+989123618518;fax:+982614405031. E-mailaddress:ezati@kiau.ac.ir(R.Ezzati). 0957-4174/$-seefrontmatterÓ2011ElsevierLtd.Allrightsreserved. doi:10.1016/j.eswa.2011.07.060 whereuL:[a,b]?[0,1]anduR:[c,d]?[0,1]areleftandrightmem- bershipfunctionoffuzzynumberu,respectively. Definition2.2(Ma,Friedman,andKandal,1999).Anarbitrary fuzzynumberintheparametricformisrepresentedbyanordered pairoffunctionsðuðrÞ;u ðrÞÞ;06r61,whichsatisfiesthefollow- ingrequirements: 1.u(r)isaboundedleft-continuousnon-decreasingfunctionover [0,1]. 2.u ðrÞisaboundedleft-continuousnon-increasingfunctionover [0,1]. 3.uðrÞ6u ðrÞ;06r61.

More Related