1 / 9

Opam2

Electronics

royabhi
Download Presentation

Opam2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CIRCUITS AND ELECTRONICS 6.002 Operational Amplifier Circuits Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 6.002 Fall 2000 Lecture 20

  2. Review ? Operational amplifier abstraction ? ∞ input resistance ? 0 output resistance ? Gain “A” very large + – ? Building block for analog systems ? We will see these examples: Digital-to-analog converters Filters Clock generators Amplifiers Adders Integrators & Differentiators Reading: Chapter 15.5 & 15.6 of A & L. Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 6.002 Fall 2000 Lecture 20

  3. Consider this circuit: R i 2 1 R i − v – +– 2v + + v + OUT v – 1 R +– 1v R 2 − = − vOUT v iR v R 2 + = v v 2 − 1 − + v R R − = − ⋅ v R 2 1 2 2 − ≈ R v 1 − − v v ⎤ ⎡+ R R = − i 2 = − v v 1 2 2 ⎢⎣ ⎥⎦ 2 R R R 1 1 1 + R + R R R = ⋅ − v v 2 1 2 2 1 2 R R R R 1 2 1 1 R ( ) = − v v 2 1 2 R 1 subtracts! Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 6.002 Fall 2000 Lecture 20

  4. Another way of solving — use superposition 1→ v 2→ 0 v 0 1 R R + v 2 + v OUT 1 1 R +– R 1v 2 – – R +– 2 2v v + R OUT 2 1 R 1|| R 2 + R R + = ⋅ vOUT v 1 2 R R = − 1 vOUT v 2 1 2 R 2 ⋅ + 1 v R R R = ⋅ 1 2 1 2 + R R R 1 2 1 R = v 2 1R = + OUT v OUT v R OUT v 1 1 2 ( ) = − v v 2 1 2 R Still subtracts! 1 Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 6.002 Fall 2000 Lecture 20

  5. Let’s build an intergrator… + O v ∫dt +– Iv – Let’s start with the following insight: i + +– i O v C – t 1 ∫ ∞ − = v i dt O C vOis related to i∫ dt But we need to somehow convert voltage vIto current. Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 6.002 Fall 2000 Lecture 20

  6. First try… use resistor R v + – i + R +– vI→ Iv O v i C R – But, vOmust be very small compared to vR, or else i ≠ v I R When is vOsmall compared to vR? dv RC = + larger the RC, smaller the vO v v O O I dt R v dv when >> v RC O for good integrator ωRC >> 1 O dt dv ≈ v RC O I 1 dt v t ∫ ∞ − or ≈ v dt Demo O I RC Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 6.002 Fall 2000 Lecture 20

  7. There’s a better way… i Notice i – + under negative feedback − v ≈ 0 V v = so, i I R – R +– Iv + C v + vI – R – = − v v R +– O C Iv + – + O v t 1 v ∫ ∞ − = − v dt I O C R We have our integrator. Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 6.002 Fall 2000 Lecture 20

  8. Now, let’s build a differentiator… + O v d +– Iv dt – Let’s start with the following insights: i dv +– = Iv i C I C dt dvI i is related to dt But we need to somehow convert current to voltage. Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 6.002 Fall 2000 Lecture 20

  9. Differentiator… Recall i i – + R i – + – + = − vO iR vO current to voltage 0 V i R C – O v C v +– – + Iv + v = v I C dv = i C I dt Demo dv = − v RC I O dt Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 6.002 Fall 2000 Lecture 20

More Related