170 likes | 311 Views
L ECTURE 14 Dynamic Programming Knapsack Independent Set on grid exercise. Algorithm Design and Analysis. CSE 565. Adam Smith. Midterm 1. It’s on Thursday, 8:15pm in Willard 75. BYO coffee You can have one (1) double sided sheet of notes on colored paper
E N D
LECTURE 14 • Dynamic Programming • Knapsack • Independent Set on grid exercise Algorithm Design and Analysis CSE 565 Adam Smith A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Midterm 1 • It’s on Thursday, 8:15pm in Willard 75. • BYO coffee • You can have one (1) double sided sheet of notes on colored paper • Everything up to and including today’s lecture is fair game • Sample exams from previous years are on the web. The sample “midterm 2” exams contain questions on material we haven’t yet covered • Network flow, Randomization, … • I will try to post (all?) homework solutions… A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Knapsack A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Knapsack Problem • Given n objects and a "knapsack." • Item i weighs wi> 0 kilograms and has value vi > 0. • Knapsack has capacity of W kilograms. • Goal: fill knapsack so as to maximize total value. • Ex: { 3, 4 } has value 40. • Many “packing” problems fit this model • Assigning production jobs to factories • Deciding which jobs to do on a single processor with bounded time • Deciding which problems to do on an exam W = 11 # value weight 1 1 1 2 6 2 3 18 5 4 22 6 5 28 7 A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Knapsack Problem • Given n objects and a "knapsack." • Item i weighs wi> 0 kilograms and has value vi > 0. • Knapsack has capacity of W kilograms. • Goal: fill knapsack so as to maximize total value. • Ex: { 3, 4 } has value 40. W = 11 • Greedy: repeatedly add item with maximum ratio vi / wi • Example: { 5, 2, 1 } achieves only value = 35 greedy not optimal. # value weight 1 1 1 2 6 2 3 18 5 4 22 6 5 28 7 A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Dynamic programming: attempt 1 • Definition:OPT(i) = maximum profit subset of items 1, …, i. • Case 1:OPT does not select item i. • OPT selects best of { 1, 2, …, i-1 } • Case 2:OPT selects item i. • without knowing what other items were selected before i,we don't even know if we have enough room for i • Conclusion. Need more sub-problems! A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Adding a new variable • Definition:OPT(i, w) = max profit subset of items 1, …, iwith weight limit w. • Case 1:OPT does not select item i. • OPT selects best of { 1, 2, …, i-1 } with weight limit w • Case 2:OPT selects item i. • new weight limit = w – wi • OPT selects best of { 1, 2, …, i–1 } with new weight limit A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Adding a new variable • How many different possible inputs for the recursive procedure? • n choices for the length i of the list • W choices for the weight limit • Fill a table with n× W entries • Need entries for i-1 before we fill entries for i A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Bottom-up algorithm • Fill up an n-by-W array. Input: n, W, w1,…,wN, v1,…,vN forw = 0 to W M[0, w] = 0 fori = 1 to n forw = 1 to W if (wi > w) M[i, w] = M[i-1, w] else M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]} returnM[n, W] A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
0 1 2 3 4 5 6 7 8 9 10 11 0 0 0 0 0 0 0 0 0 0 0 0 { 1 } 0 1 1 1 1 1 1 1 1 1 1 1 { 1, 2 } 0 1 6 7 7 7 7 7 7 7 7 7 { 1, 2, 3 } 0 1 6 7 7 18 19 24 25 25 25 25 { 1, 2, 3, 4 } 0 1 6 7 7 18 22 24 28 29 29 40 { 1, 2, 3, 4, 5 } 0 1 6 7 7 18 22 28 29 34 34 40 Item Value Weight 1 1 1 2 6 2 3 18 5 4 22 6 5 28 7 Knapsack table W n W = 11 OPT: { 4, 3 } value = 22 + 18 = 40 A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
How do we make turn this into a proof of correctness? • Dynamic programming (and divide and conquer) lends itself directly to induction. • Base cases: OPT(i,0)=0, OPT(0,w)=0 (no items!). • Inductive step: explaining the correctness of recursive formula • If the following values are correctly computed: • OPT(0,w-1),OPT(1,w-1),…,OPT(n,w-1) • OPT(0,w),…,OPT(i-1,w) • Then the recursive formula computes OPT(i,w) correctly • Case 1: …, Case 2: … (from previous slide). A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Time and Space Complexity • Given n objects and a "knapsack." • Item i weighs wi> 0 kilograms and has value vi > 0. • Knapsack has capacity of W kilograms. • Goal: fill knapsack so as to maximize total value. What is the input size? • In words? • In bits? W = 11 # value weight 1 1 1 2 6 2 3 18 5 4 22 6 5 28 7 A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Time and space complexity • Time and space:(n W). • Not polynomial in input size! • "Pseudo-polynomial." • Decision version of Knapsack is NP-complete. [KT, chapter 8] • Knapsack approximation algorithm. There is a poly-time algorithm that produces a solution with value within 0.01% of optimum. [KT, section 11.8] A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Review • Weighted independent set on the chain • Input: a chain graph of length n with values v1,..,vn • Goal: find a heaviest independent set • Let OPT({1,…,n}) = heaviest IS among {1,…,n} • Write down a recursive formula for OPT • How many different subproblems? 8 3 7 10 7 2 A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Exercise • Do the same with a 2 xn grid graph • Three types of subproblems: • grid(i) • gridTop(i) • gridBottom(i) 8 3 7 10 7 2 12 52 7 14 10 8 8 3 7 10 7 12 52 7 14 10 8 3 7 10 7 2 12 52 7 14 10 8 3 7 10 7 12 52 7 14 10 8 A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Exercise • grid(i): maximum independent set in the subgraph consisting of only the first i pairs of nodes • gridTop(i): maximum independent set in the subgraph consisting of the first i pairs of nodes plus the top node of the (i+1)-st pair • gridBottom(i): maximum independent set in the subgraph consisting of the first i pairs of nodes plus the bottom node of the (i+1)-st pair 8 3 7 10 7 12 52 7 14 10 i pairs 8 3 7 10 7 2 12 52 7 14 10 i pairs 8 3 7 10 7 12 52 7 14 10 8 i pairs
Recursive formulas for subproblems • Say ti, bi are the weights of the nodes in the ith pair • grid(i) = max(bi,ti) if i=1, else max(gridBottom(i-1), ti+ gridBottom(i-2)) • gridBottom(i) = bi if i=0, else max(grid(i-1), bi+ gridTop(i-1) • gridTop(i) = ti if i=0, else max(grid(i-1), ti + gridBottom(i-1) Bottom-up algorithm takes O(n) time. A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne