1 / 36

5-1

Points, Lines, Planes, and Angles. 5-1. Warm Up. Problem of the Day. Lesson Presentation. Pre-Algebra. 5-1. Points, Lines, Planes, and Angles. Pre-Algebra. Warm Up Solve. 1. x + 30 = 90 2. 103 + x = 180 3. 32 + x = 180 4. 90 = 61 + x 5. x + 20 = 90. x = 60. x = 77.

royce
Download Presentation

5-1

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Points, Lines, Planes, and Angles 5-1 Warm Up Problem of the Day Lesson Presentation Pre-Algebra

  2. 5-1 Points, Lines, Planes, and Angles Pre-Algebra Warm Up Solve. 1. x + 30 = 90 2. 103 + x = 180 3. 32 + x = 180 4. 90 = 61 + x 5. x + 20 = 90 x = 60 x = 77 x = 148 x = 29 x = 70

  3. 1 3 1 6 Problem of the Day Mrs. Meyer’s class is having a pizza party. Half the class wants pepperoni on the pizza, of the class wants sausage on the pizza, and the rest want only cheese on the pizza. What fraction of Mrs. Meyer’s class wants just cheese on the pizza?

  4. Learn to classify and name figures.

  5. Vocabulary point line plane segment ray angle rightiangle acuteiiangle obtuseiiangle complementaryiiangles supplementaryiiangles vertical angles congruent

  6. Points, lines, and planes are the building blocks of geometry. Segments, rays, and angles are defined in terms of these basic figures.

  7. A point names a location. • A Point A

  8. C l B line l, or BC A line is perfectly straight and extends forever in both directions.

  9. A plane is a perfectly flat surface that extends forever in all directions. P E plane P, or plane DEF D F

  10. GH A segment, or line segment, is the part of a line between two points. H G

  11. A ray is a part of a line that starts at one point and extends forever in one direction. J KJ K

  12. KL or JK Additional Example 1A & 1B: Naming Points, Lines, Planes, Segments, and Rays A. Name 4 points in the figure. Point J, point K, Point L, and Point M B. Name a line in the figure. Any 2 points on a line can be used.

  13. Plane , plane JKL Additional Example 1C: Naming Points, Lines, Planes, Segments, and Rays C. Name a plane in the figure. Any 3 points in the plane that form a triangle can be used.

  14. JK, KL, LM, JM KJ, KL, JK, LK Additional Example 1D & 1E: Naming Points, Lines, Planes, Segments, and Rays D. Name four segments in the figure. E. Name four rays in the figure.

  15. BC DA or Try This: Example 1A & 1B A. Name 4 points in the figure. Point A, point B, Point C, and Point D B. Name a line in the figure. Any 2 points on a line can be used. B A C D

  16. Plane , plane ABC, plane BCD, plane CDA, or plane DAB Try This: Example 1C C. Name a plane in the figure. Any 3 points in the plane that form a triangle can be used. B A C D

  17. AB, BC, CD, DA DA, AD, BC, CB Try This: Example 1D & 1E D. Name four segments in the figure E. Name four rays in the figure B A C D

  18. An angle () is formed by two rays with a common endpoint called the vertex (plural, vertices). Angles can be measured in degrees. One degree, or 1°, is of a circle. m1 means the measure of 1. The angle can be named XYZ, ZYX, 1, or Y. The vertex must be the middle letter. X 1 1 360 m1 = 50° Y Z

  19. G H J F K The measures of angles that fit together to form a straight line, such as FKG, GKH, and HKJ, add to 180°.

  20. P N R Q M The measures of angles that fit together to form a complete circle, such as MRN, NRP, PRQ, and QRM, add to 360°.

  21. A right angle measures 90°. An acute angle measures less than 90°. An obtuse angle measures greater than 90° and less than 180°. Complementary angles have measures that add to 90°. Supplementary angles have measures that add to 180°.

  22. Reading Math A right angle can be labeled with a small box at the vertex.

  23. Additional Example 2A & 2B: Classifying Angles A. Name a right angle in the figure. TQS B. Name two acute angles in the figure. TQP, RQS

  24. Additional Example 2C: Classifying Angles C. Name two obtuse angles in the figure. SQP, RQT

  25. Additional Example 2D: Classifying Angles D. Name a pair of complementary angles. mTQP + mRQS = 47° + 43° = 90° TQP, RQS

  26. Additional Example 2E: Classifying Angles E. Name two pairs of supplementary angles. TQP, RQT mTQP + mRQT = 47° + 133° = 180° mSQP + mRQS = 137° + 43° = 180° SQP, RQS

  27. C B 90° A D 75° 15° E Try This: Example 2A A. Name a right angle in the figure. BEC

  28. C B 90° A D 75° 15° E Try This: Example 2B & 2C B. Name two acute angles in the figure. AEB, CED C. Name two obtuse angles in the figure. BED, AEC

  29. C B 90° A D 75° 15° E Try This: Example 2D D. Name a pair of complementary angles. AEB, CED mAEB + mCED = 15° + 75° = 90°

  30. C B 90° A D 75° 15° E Try This: Example 2D & 2E E. Name two pairs of supplementary angles. mAEB + mBED = 15° + 165° = 180° AEB, BED mCED + mAES = 75° + 105° = 180° CED, AEC

  31. Congruent figures have the same size and shape. • Segments that have the same length are congruent. • Angles that have the same measure are congruent. • The symbol for congruence is , which is read “is congruent to.” • Intersecting lines form two pairs of vertical angles. Vertical angles are always congruent, as shown in the next example.

  32. Additional Example 3A: Finding the Measure of Vertical Angles In the figure, 1 and 3 are vertical angles, and 2 and 4 are vertical angles. A. If m1 = 37°, find m3. The measures of 1 and 2 add to 180° because they are supplementary, so m2 = 180° – 37° = 143°. The measures of 2 and 3 add to 180° because they are supplementary, so m3 = 180° – 143° = 37°.

  33. Additional Example 3B: Finding the Measure of Vertical Angles In the figure, 1 and 3 are vertical angles, and 2 and 4 are vertical angles. B. If mÐ4 = y°, find mÐ2. m3 = 180° – y° m2 = 180° – (180° – y°) = 180° – 180° + y° Distributive Property m2 = m4 = y°

  34. Try This: Example 3A In the figure, 1 and 3 are vertical angles, and 2 and 4 are vertical angles. 2 3 1 A. If m1 = 42°, find m3. 4 The measures of 1 and 2 add to 180° because they are supplementary, so m2 = 180° – 42° = 138°. The measures of 2 and 3 add to 180° because they are supplementary, so m3 = 180° – 138° = 42°.

  35. Try This: Example 3B In the figure, 1 and 3 are vertical angles, and 2 and 4 are vertical angles. 2 3 1 B. If m4 = x°, find m2. 4 m3 = 180° – x° m2 = 180° – (180° – x°) = 180° –180° + x° Distributive Property m2 = m4 = x°

  36. Possible answer: AD and BE Lesson Quiz In the figure, 1 and 3 are vertical angles, and 2 and 4 are vertical angles. 1. Name three points in the figure. Possible answer: A, B, and C 2. Name two lines in the figure. 3. Name a right angle in the figure. Possible answer: AGF 4. Name a pair of complementary angles. Possible answer: 1 and 2 5. If m1 47°, then find m3. 47°

More Related