180 likes | 188 Views
Explore the Pythagorean Theorem and its applications in solving problems related to perimeter, area, and volume. Learn to find the lengths of hypotenuses and legs, as well as the areas of triangles and other shapes.
E N D
Pre-Algebra HOMEWORK Page 292 #8-15
Our learning goal is to be able to solve for perimeter, area and volume. Learning Goal Assignments • Perimeter and Area of Rectangles and Parallelograms • Perimeter and Area of Triangles and Trapezoids • The Pythagorean Theorem • Circles • Drawing Three-Dimensional figures • Volume of Prisms and Cylinders • Volume of Pyramids and Cones • Surface Area of Prisms and Cylinders • Surface Area of Pyramids and Cones • Spheres
6-3 The Pythagorean Theorem Learning Goal Assignment Learn to use the Pythagorean Theorem and its converse to solve problems.
6-3 The Pythagorean Theorem Warm Up Problem of the Day Lesson Presentation Pre-Algebra
6-3 The Pythagorean Theorem Pre-Algebra Warm Up Graph the figures with the given verticals and find the area. 1. (–1, –1), (–1, 3), (6, –1) 2. (2, 1), (8, 1), (6, –3) 3. (3, –2), (15, –2), (14, 6), (4, 6) 14 units2 12 units2 88 units2
Problem of the Day A side of a square A is 5 times the length of square B. How many times as great is the area of square A than the area of square B? 25
6-3 The Pythagorean Theorem Learning Goal Assignment Learn to use the Pythagorean Theorem and its converse to solve problems.
Vocabulary Pythagorean Theorem leg hypotenuse
41 = c Solve for c; c = c2. Additional Example 1A: Find the the Length of a Hypotenuse Find the length of the hypotenuse. c A. 4 5 Pythagorean Theorem a2 + b2 = c2 42 + 52 = c2 Substitute for a and b. Simplify powers. 16 + 25 = c2 41 = c2 6.40c
74 = c Solve for c; c = c2. Try This: Example 1A Find the length of the hypotenuse. c A. 5 7 Pythagorean Theorem a2 + b2 = c2 52 + 72 = c2 Substitute for a and b. Simplify powers. 25 + 49 = c2 8.60c
Solve for c; c = c2. 225 = c Additional Example 1B: Find the the Length of a Hypotenuse Find the length of the hypotenuse. triangle with coordinates B. (1, –2), (1, 7), and (13, –2) Pythagorean Theorem a2 + b2 = c2 Substitute for a and b. 92 + 122 = c2 Simplify powers. 81 + 141 = c2 15= c
y x Solve for c; c = c2. 61 = c Try This: Example 1B Find the length of the hypotenuse. B. triangle with coordinates (–2, –2), (–2, 4), and (3, –2) (–2, 4) The points form a right triangle. a2 + b2 = c2 Pythagorean Theorem 62 + 52 = c2 Substitute for a and b. 36 + 25 = c2 Simplify powers. (3, –2) (–2, –2) 7.81c
576 = 24 Additional Example: 2 Finding the Length of a Leg in a Right Triangle Solve for the unknown side in the right triangle. Pythagorean Theorem a2 + b2 = c2 25 Substitute for a and c. 72 + b2 = 252 b Simplify powers. 49 + b2 = 625 –49 –49 b2 = 576 7 b = 24
128 11.31 Try This: Example 2 Solve for the unknown side in the right triangle. a2 + b2 = c2 Pythagorean Theorem 12 Substitute for a and c. b 42 + b2 = 122 Simplify powers. 16 + b2 = 144 –16 –16 4 b2 = 128 b 11.31
a = 20 units ≈ 4.47 units 1 2 1 2 A = hb = (8)( 20) = 4 20 units2 17.89 units2 Additional Example 3: Using the Pythagorean Theorem to Find Area Use the Pythagorean Theorem to find the height of the triangle. Then use the height to find the area of the triangle. a2 + b2 = c2 Pythagorean Theorem Substitute for b and c. a2 + 42 = 62 a2 + 16 = 36 6 6 a a2 = 20 4 4 Find the square root of both sides.
a = 21 units ≈ 4.58 units 1 2 1 2 A = hb = (4)( 21) = 2 21 units2 9.2 units2 Try This: Example 3 Use the Pythagorean Theorem to find the height of the triangle. Then use the height to find the area of the triangle. a2 + b2 = c2 Pythagorean Theorem a2 + 22 = 52 Substitute for b and c. 5 5 a2 + 4 = 25 a a2 = 21 2 2 Find the square root of both sides.
Lesson Quiz Use the figure for Problems 1-3. 1. Find the height of the triangle. 8m 2. Find the length of side c to the nearest meter. c 10 m h 12m 3. Find the area of the largest triangle. 6 m 9 m 60m2 4. One leg of a right triangle is 48 units long, and the hypotenuse is 50 units long. How long is the other leg? 14 units