1 / 51

New CP Violation Results from B-meson Decays at Belle

New CP Violation Results from B-meson Decays at Belle. Yee Bob Hsiung National Taiwan University. December 1, 2004. 清華大學 Physics Colloquium. @. What is CP Violation?. CP Violation or Matter-Antimatter asymmetry C: charge conjugation P: space inversion T: Time reversal.

russ
Download Presentation

New CP Violation Results from B-meson Decays at Belle

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. New CP Violation Results from B-meson Decays at Belle Yee Bob Hsiung National Taiwan University December 1, 2004 清華大學Physics Colloquium @

  2. What is CP Violation? CP Violation or Matter-Antimatter asymmetry C: charge conjugation P: space inversion T: Time reversal

  3. Why Studying CP Violation?

  4. CP Violation in the Standard Model • CP violation (e) was first discovered in Kaon decays (1964) • 33 years later (1997) “direct” CP violation was observed in K to 2p decays (e’/e) • CP violation in the B decays can now be studied in both Belle(KEK) and BaBar(SLAC) in detail

  5. Cabbibo-Kobayashi-Maskawa Matrix

  6. CP-Violation in Standard Model A phase in the quark-quark current leads to CP-Violation (Kobayashi, Maskawa, 1973) Ng=3 Nphase=1  CP-Violation Possible 6 unitarity relations ( triangles in the complex plane) JCP=2(Triangle Area) Is the unique measure of CP-Violation in SM

  7. Wolfenstein Parametrization

  8. CP Violating Phase

  9. The Kaon System

  10. NA48 @ CERN Fermilab

  11. Direct CP Violation DS = 1 Penguin Diagram

  12. Direct CP Violation: Re(e’/e)

  13. Kaon Decays and the SM JCP=2(Triangle Area) is the unique measure of CP-Violation in SM JCP = Im(Vud*VusVts*Vtd) ~ cosqc sinqcIm lt In the Wolfenstein parameterisation (l, A, h, r): Im lt = A2l5h, Re lt = A2l5r KL to 2pe’/e CP-Violation

  14. The Unitarity Triangle

  15. The Unitarity Triangle

  16. The B Factories: KEKB and SLAC-PEPII

  17. 感謝國科會九年來的支持!

  18. KEK(日本高能實驗室)鳥瞰圖 筑波山

  19. 253 fb-1 on Y(4S) 28 fb-1 below Y(4S) KEKB 加速器示意圖 8GeV electron 3.5GeV positron 正電子 電子 KEKB Collider 275M BB Lpeak = 1.39 x 1034 sec-1cm-2 @ 1.2A x 1.6A

  20. Belle The Billion $ Question: 測量B系統之CP破壞 B約兆分之一秒左右衰變 Red Hot ! 2001 J/yKS, p+p-, h’KS, fKS One B Decay CP Eigenstate Other B Decay Tag Flavor Measure Both Decay Vertex 台大都掌握中

  21. Belle Detector Aerogel Cherenkov cnt. n=1.015~1.030 SC solenoid 1.5T 3.5 GeVe+ CsI(Tl) 16X0 TOF conter 8 GeVe- Central Drift Chamber small cell +He/C2H5 Si vtx. det. 3(4) lyr. DSSD m / KL detection 14/15 lyr. RPC+Fe

  22. B-meson Reconstruction Utilize special Kinematics at Y(4S) Energy difference: Beam-constrained mass: (ES)

  23. qq e- e+ Other B continuum Y (4S) e+ e- - BB Signal B Continuum Suppression Dominant Background for rare decays: Continuum e+e-qq “continuum” (~3x BB) Jet-like To suppress: use event shape variables BB spherical

  24. SVD1 SVD2 SVD Upgrade 2003 summer Impact parameter resolution rf Z • 1 MRad >20 MRad • 3 layers 4 layers • 23º<q<139º 17º<q<150º • Rbp = 2.0 cm 1.5 cm • Better I.P. resolutions _ _ 152M BB pairs with SVD1 + 123M BB pairs with SVD2

  25. Collaborate w/ Tokyo & Princeton etc. Belle SVD2 Upgrade NTU Contribution: TTM Trigger Timing Module SVD2under construction Install Summer 2003 FPGAs From 3-layers of SVD1 to 4-layers + self-tracking

  26. Students!

  27. SVD2: lifetime & Dmd SVD2 only D0p+, J/yK , D–p+, D*–p+/r+, D*ln Belle preliminary SVD1 _ (152M BB) SVD2 _ (123M BB) (stat) [ps] (stat) [ps] (stat) [ps-1] [Belle-conf-0436] New detector resolution is well understood

  28. W _ _ s/d Vtb t K/p+ W u s/d g K/p+ u u Vub 0 d B _ _ G(Bf ) - G(Bf ) p- p- d d u d d _ _ G(Bf ) + G(Bf ) ACP = 0 d B b b Vts/d Vus/d   B Kp/pp Tree Penguin • Simplest charmless rare decay modes • Tree - Penguin interference Direct CP Violation Key prediction of Kobayashi-Maskawa model Understanding of Penguin Anomaly (New Physics)

  29. 275M BB New ACP(B0 K+p-) _ B0 K-p+ B0 K+p- Signal: 2139 53 [submitted to PRL] ACP = -0.101  0.025  0.005 3.9ssignificance [PID efficiency bias correction: dA = -0.01  0.004] 2ndEvidence for DCPV at Belle ! [A(p+p-) 3.2s]

  30. 152M BB App Spp B0gp+p CPV Result Direct CPV 3.2s good tag Dt (ps) App = +0.58 0.15(stat) 0.07(syst) Spp = 1.00 0.21(stat) 0.07(syst) [PRL93,021801 (2004)]

  31. 275M BB New ACP(B  K+p0 ) Kp0 : 728 53 ACP(Kp0) = 0.04  0.05  0.02 hint thatACP(K+p- ) ¹ACP(Kp0 ) ? (2.4s) d p0 Large EW penguin (Z0) ? New Physics ? _ d B- b s K- u u

  32. 275M BB, New Observation of B0p0p0 Key mode for f2(a) in Bgpp CPV isospin analysis Evidence (LP03)Observation ! Signal: 82  16 (6.0s) B = (2.32  ) x 10-6 0.44 0.48 0.22 0.18 Large Br established Mbc [Belle-conf-0406] ACP = 0.44  0.51  0.17 0.16 uses same Flavor-tagging as TCPV analysis 1st measurement !

  33. aEW Radiative & EW Penguins Loops Sensitive to New Physics l+ l- b  sl+l- penguin ~1/100 b  sg penguin Br, ACP ~SM b  dg penguin K*g TCPV

  34. 275M BB B  K(*) l+l- [Belle-conf-0415] LP03: B Xsll, K(*)ll : Belle/BaBar Br, ACP ~SM update >10s signals 82 11 signals 79 10 signals B (Kll)= (5.50 0.27  0.02) 0.75 0.70 B (K*ll)= (16.5  0.9  0.4) 2.3 2.2 x 10-7 Mbc q2 (GeV2/c2)

  35. * V V tb ts Time-dependent CP Violation (TCPV) B0 fCP = fCP B0 mixing B0 B0 ACP (Dt) = S sin(DmDt) + A cos (DmDt) Mixing induced CPV Direct CPV f + SM: bs Penguin phase = J/yKS(bc) + New Physics with New Phase Sbs¹ sin2f1 , Acan¹ 0 Sbs=sin2f1,A=0

  36. Time Dependent CP Asymmetry S= -xfsin2f1: SM prediction A= 0 or |l| = 1  No direct CPV Af q l = hf CP CP p Af Inputs: xf = -1, S = 0.6 A= 0.0 CP

  37. b  sqq Penguin CPV - Belle @LP03 (140 fb-1) [PRL 91, 261602 (2003)] B0fKs B0 J/yKsetc sin2f1=0.728  0.06 “sin2f1”= -0.96  0.51 3.5s deviation from the SM !

  38. 275M BB pB* B0f K0 fKS Nsig=139 14 fKL purity 0.63 Nsig= 36 15 purity 0.17 Similar to J/yKL recon. + sophisticated continuum suppression includes Ks p0po (Nsig=13 5)

  39. B0f KS : Mass & Helicity f Helicity Mass bkg

  40. 275M BB S = 0.73 fit B0f K0 : CPV Result f K0 Good tags Poor tags Good tags fKS+fKL:S(fK0) = +0.06 0.330.09 A(fK0) = +0.080.220.09 ~2s away from SM

  41. Checks: sin2f1 (B0J/y KS/L) Validation of new data sample (SVD2) _ SVD1: 152M BB SVD1 S = 0.696  0.061 (stat) A = 0.011  0.043 (stat) Good tags _ SVD2: 123M BB SVD2 S = 0.629  0.069 (stat) A = 0.035  0.044 (stat) Good tags Dt (ps) f K0 ~2.3s SVD1: S = -0.68  0.46 A = -0.02  0.28 SVD2: S = +0.78  0.45 A =+0.17  0.33 many systematic checks, all ok 

  42. History of “sin2f1” with fK0 _ sin2f1 from ccs “sin2f1” BABAR Belle 106

  43. 275M BB S = 0.73 fit B0h’KS& K+K-KS high statistics modes h’KS K+K-KS (fexcluded) h’rg, hp+p- (hgg, p+p-p0) Nsig=399 28 Nsig=512 27 purity 0.56 purity 0.61 CP=+1: 1.03 0.15 0.05 Raw Asymmetry Raw Asymmetry Good tags Good tags “sin2f1” (~0.5s @SM) (~1.0s @SM) S = +0.65 0.18 0.04 -S = +0.490.18 0.04 ( ) A = -0.19 0.11 0.05 A = -0.08 0.12 0.07 0.17 0.0

  44. 275M BB S = 0.73 fit B0wKS& f0(980)KS wKS f0(980)KS additional modes Nsig=31 7 Nsig=94 14 purity 0.53 purity 0.56 Raw Asymmetry Raw Asymmetry Good tags Good tags “sin2f1” (~0s @SM) (~2.9s @SM) S = +0.75 0.64 -S = -0.470.41 0.08 A = +0.26 0.48 0.15 A = -0.39 0.27 0.08 0.13 0.16

  45. 275M BB Summary of b  sqq CPV - “sin2f1” 2.4 (A: consistent with 0)

  46. Charmless B Br Summary HFAG P.Chang (NTU) J.Alexander (Cornell) J.Smith (Colorado) Complete list (other Br &ACP) http://www.slac.stanford.edu/xorg/hfag/rare/ x10-6

  47. Summary • CP Violation has been well established in the kaon system, both “direct” and “indirect” and now being extensively explored in B-meson system • Evidence of “direct” CP violation has been seen in B0 K+p-(~-10%), search for new physics beyond the Standard Model will continue in bs penguin modes and 3 angles measurement of unitarity triangle. • However, the origin of CP violation may well be uncovered from both K and B system in the next 5-10 years by comparing the (in)consistency of the unitarity triangles • There maybe hints of new physics beyond the SM in the K and B system which will call for high luminosity (1036 SuperB) machine, better experiments at JHF-JPARC and new physics studies/searches in the LHC and/or LC era

  48. Future Prospect of f1 (b) Measurements

  49. Future Prospect of f2 (a) Measurements 0.5 ab-1 5 ab-1 50 ab-1 Going for Super B factory

More Related