1 / 18

Dynamic Partial Evaluation

Explore dynamic partial evaluation as a solution to optimize code at runtime and learn about metaobject protocols and dynamic dispatch mechanisms. Discover Greg Sullivan's insights on code optimization during the NEPLS conference in 2000.

Download Presentation

Dynamic Partial Evaluation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Dynamic Partial Evaluation Gregory T. Sullivan MIT AI Lab gregs@ai.mit.edu

  2. The Challenge • Metaobject protocols - reflection plus dynamism (as opposed to Java reflection). • MOP  More indirection, less optimization (ouch!) • How to optimize when, in principle, everything may change? Dynamic Partial Evaluation - Greg Sullivan - NEPLS - December 7, 2000

  3. The Solution • Optimize at Runtime. • Optimize Optimistically. • JIT approach: “traditional” - (re)analyze, regenerate • analysis walks the code. • Dynamic PE: gather data as code is executed • execution walks the code. • Motto: “Don’t Model -- Observe.” Dynamic Partial Evaluation - Greg Sullivan - NEPLS - December 7, 2000

  4. eq(GF42) T T l1=find-applicable-methods(foo, x, y); foo1(Point, Point), foo2(Line, Line), foo3(ColorPoint, ColorPoint) l2=generic-methods(foo); eq(l2) instance?(x, Point); instance?(x, Line); instance?(x, ColorPoint); true ,false ,true Bool Bool Bool instance?(y, Point); instance?(y, Line); instance?(y, ColorPoint); true ,false ,true Bool Bool Bool foo1(Point, Point), foo3(ColorPoint, ColorPoint) l1= list(fun) l3=sort-applicable-methods(l1) foo3(ColorPoint, ColorPoint), foo1(Point, Point), list(fun) f=first(l3) foo3(ColorPoint, ColorPoint) fun direct-call(f, x, y); Ex: Method Dispatch With a MOP Env = fooGF42 , xCP101 , yCP302 dyn-call(foo, x, y); Dynamic Partial Evaluation - Greg Sullivan - NEPLS - December 7, 2000

  5. Example, Continued Env = fooGF42 , xCP101 , yCP302 eq(GF42) ColorPoint ColorPoint dyn-call(foo, x, y); l1=find-applicable-methods(foo, x, y); foo1(Point, Point), foo2(Line, Line), foo3(ColorPoint, ColorPoint) l2=generic-methods(foo); eq(l2) instance?(x, Point); instance?(x, Line); instance?(x, ColorPoint); true ,false ,true eq(true) eq(false) eq(true) instance?(y, Point); instance?(y, Line); instance?(y, ColorPoint); true ,false ,true eq(true) eq(false) eq(true) foo1(Point, Point), foo3(ColorPoint, ColorPoint) l1= eq(l1) l3=sort-applicable-methods(l2) foo3(ColorPoint, ColorPoint), foo1(Point, Point), eq(l3) f=first(l3) foo3(ColorPoint, ColorPoint) eq(foo3) direct-call(f, x, y); Dynamic Partial Evaluation - Greg Sullivan - NEPLS - December 7, 2000

  6. Example, Continued Two Scenarios • Straight Optimization fun bar (x : ColorPoint, y : ColorPoint) dyn-call(foo, x, y); rewrites to fun bar (x : ColorPoint, y : ColorPoint) direct-call(foo3, x, y); // or inline • Profile-based method customization fun bar (x : Object, y : Object) dyn-call(foo, x, y); adds a new method add-fun bar (x : ColorPoint, y : ColorPoint) direct-call(foo3, x, y); // or inline Dynamic Partial Evaluation - Greg Sullivan - NEPLS - December 7, 2000

  7. Machinery • Updating runtime with optimized methods. • we use generic functions and multiple dispatch. • Extended values: [regular value, expression, type] • environment maps ids to extended values. • Eval(exp, env)  [value, exp’, type] • (residual) expression represents “in the current environment, this expression will produce this value”. • the type encodes “what we can assume” when using this value. Dynamic Partial Evaluation - Greg Sullivan - NEPLS - December 7, 2000

  8. Context • Dynamic Virtual Machine (DVM) • Multiple dispatch, dynamically typed, subtypes, highly reflective, predicate types. • “Native” language DVML: Scheme plus types, generic functions, cells Caveats • Only a prototype so far. Paper • DVM, a dynamically-typed lambda-calculus with generic functions and subtyping. Dynamic Partial Evaluation - Greg Sullivan - NEPLS - December 7, 2000

  9. Dynamic PE for Expressions • Literals: { n }  [n, { n }, eq(n)] • Variable reference: { x }if Env(x)  V  [v, -, eq(v)], and v is expressible as a literal, return [v, {v}, eq(v)]else return V. Dynamic Partial Evaluation - Greg Sullivan - NEPLS - December 7, 2000

  10. Conditional Expressions { if e0 then e1 else e2 }, e0 V0  [v0, e’0, t0],if true?(v0) and e1 V  [v, e’1, t], • If v0 is fully static, eliminate the if & return V. • If v0 is not static, must rebuild conditional: return [v, {if e’0 then e’1 else e2}, T]. No info. about type. • Likewise for false and e2. * * Dynamic Partial Evaluation - Greg Sullivan - NEPLS - December 7, 2000

  11. Some Details • This amounts to inlining, and is done heuristically. • Must handle conflicting bindings, closed-over variables. • Primitive functions handled specially. Call expressions * {call e0 e1 ... en}, ei Vi  [vi, e’i, ti], v0 = (xi : txi . ef):tf, check!(vi, txi) ef[xi[vi, e’i,glb(ti, txi)]]  V  [v, e’, t] * • If V0 not static, return [v, {call e’0e’1 ... e’n}, T]. • If V0 static, may return [v, e’, glb(t,tf)]. Dynamic Partial Evaluation - Greg Sullivan - NEPLS - December 7, 2000

  12. Generic Function Call {gf-call e0 e1 ... en}, ei Vi  [vi, e’i, ti], v0 = {f1,...,fm}, find-mam(f1,...,fm,V1...Vn)= [(xi : txi . ef):tf, static?](spec?, spec-types) = choose-spec(V0...Vn)arg-typei = if spec? spec-types[i] else glb(ti, txi) ef[xi[vi, e’i,arg-typei]]  V  [v, e, t] selection relies only on static types? • if spec?, add-method(v0, (xi : spec-types[i] . e):tf) • if V0 static and static?, fold as in non-generic function call. • if V0 static and not static?, [v, {gf-call e’0...e’n}, restype(v0)] Dynamic Partial Evaluation - Greg Sullivan - NEPLS - December 7, 2000

  13. Swept Under the Rug Earlier dyn-call(foo,x,y)  direct-call(foo3,x,y) • Depends on foo’s method set staying constant. Also, other elements of MOP. • Runtime PE must track dependencies on generic function method sets and cells. Dynamic Partial Evaluation - Greg Sullivan - NEPLS - December 7, 2000

  14. Ex: Reflection in Java • From Braux & Noyé, PEPM00 public static void dumpFields(Object anObj) throws java.lang.IllegalAccessException { Field[] fields = anObj.getClass().getFields(); for (int i = 0; i < fields.length; i++) System.out.println(fields[i].getName()+“: “ +fields[i].get(anObj)); } specialized to Point class, should yield: public static void dumpFieldsPoint(Point anObj) { System.out.println(“x: “+anObj.x); System.out.println(“y: “+anObj.y); } Dynamic Partial Evaluation - Greg Sullivan - NEPLS - December 7, 2000

  15. MOP Dynamic PE -- What It’s Best At • Collapsing indirection. • Removing dynamic type checks. gf-call(g, v)  call(f, v) + dependencies call(f, v) Dynamic Partial Evaluation - Greg Sullivan - NEPLS - December 7, 2000

  16. Future Work • Tuning • when to specialize? • minimize overhead, gauge performance. • Gotchas: • customization introducing ambiguity • mutual recursion/specialization • Applied at machine code level? Dynamic Partial Evaluation - Greg Sullivan - NEPLS - December 7, 2000

  17. The End • http://www.ai.mit.edu/~gregs/dynamic-pe.html Dynamic Partial Evaluation - Greg Sullivan - NEPLS - December 7, 2000

  18. Harnessing Dynamic PE • Suppose foo(x : Object){e} called with x a Point. • Run e with x  [-,-,Point] and get [v,e’,t], • Can define foo(x : Point){ e’ }. • But ...Where to put it? How to use it? • Generic function: contains a set of methods. • Multiple dispatch: chooses the most applicable based on types of all arguments. Dynamic Partial Evaluation - Greg Sullivan - NEPLS - December 7, 2000

More Related