1 / 20

Pd(110) 表面における水素吸収の機構

文部科学省科学研究費新学術領域研究 ・ 2014 年 3 月 11 日・東京大学. Materials Design through Computics Complex Correlation and Non-equilibrium Dynamics. 「コンピューティクスによる物質デザイン: 複合相関と非平衡ダイナミクス」 平成 25 年度 第 2 回研究会. Pd(110) 表面における水素吸収の機構. Markus Wilde ・ Satoshi Ohno ・ Katsuyuki Fukutani

ruth-knight
Download Presentation

Pd(110) 表面における水素吸収の機構

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 文部科学省科学研究費新学術領域研究 ・2014年3月11日・東京大学 Materials Design through Computics Complex Correlation and Non-equilibrium Dynamics 「コンピューティクスによる物質デザイン: 複合相関と非平衡ダイナミクス」 平成 25 年度 第 2 回研究会 Pd(110)表面における水素吸収の機構 Markus Wilde ・Satoshi Ohno ・Katsuyuki Fukutani Institute of Industrial Science, University of Tokyo

  2. Hydrogen Absorption at Pd Surfaces Industrial Importance: • Hydrogen Storage (in hydrides) • Hydrogenation Catalysis Objectives: • Obtain atomic level understanding of the absorption mechanism • Model system: H2→ Pd(110) (single crystal) • Influence of surface structure on absorption properties H2 H2 z Surface Subsurface Bulk H H 0 H2 time => Clarify the microscopic pathways of hydrogen surface penetration

  3. Activation Energy Paradox Potential Energy Prevailing H absorption model Experimental results H/Pd R H2 ? H -0.1 eV -0.2 eV Monatomic in-diffusion Absorption activation Chemi- sorption Emono = 0.3~0.6 eV[1-4] * * Eabs< 0.10eV[5, 6] Identify: The actual reaction coordinate of H2 absorption -0.5 eV [5] Okuyama et al., Surf. Sci. 401 (1998) 344. [6] Ohno et al., J. Chem. Phys., submitted. [1] Padama et al., J. Phys. Soc. Jpn. 81 (2012) 114705. [2] Ferrin et al., Surf. Sci. 606, 679 (2012). [3] Nobuhara et al., Surf. Sci. 566, 703 (2004). [4] Ozawa et al., J. Phys.: Condens. Matter 19, 365214 (2007).

  4. Pd (110) Surface of particular interest: Pd(110) Pd(110) single crystal surface Pd✓ Well-known H absorbing metal ✓ Excellent catalyst for olefin hydrogenation (110)✓ Single crystal: Well-defined structure ✓ Openness: Surface atomic density ー40% vs. (111) ✓ H-induced surface reconstruction: “Prone to hydrogen absorption”[1] Top view Side view H2 exposure Pairing-row (P-R) reconstruction (1x2) ・Second-layer exposed ・Atomic step-like structure ・Lateral contraction in paired rows [1] Christmann, Prog. Surf. Sci. 48, 15 (1995).

  5. ② Nuclear Reaction Analysis (NRA) via 1H(15N,ag)12C: (Eres=6.385 MeV, G=1.8 keV) → distinguishes surface-adsorbed from absorbed H (~2 nm depth resolution) Depth (nm) g  [Hsurface] Ei=Eres g-detector g-yield (cts/mC) Experimental N 15N2+ ion beam g  [Habsorbed] Ei>Eres 0 probing depth: z(Ei)= (Ei-Eres)/(dE/dz) 15N ion energy (MeV) Experimental Approach: TDS + NRA M. Wilde, PRB 78 (2008) 114511. Combine two hydrogen detection techniques: ① Thermal Desorption Spectroscopy (TDS): → H2(D2) exposures at given Te, desorption. → No. of H species, desorption activation energy → lacks information on H location (on/below surface) 300 L H+H2 on Pd(100) at 100 K → achieves unambiguous TDS peak identifications

  6. Surface Adsorption Phases (LEED & TPD): H/Pd(110) H2 exposureat Te = 130 K 50 L~ 0 L: (clean) 0.3 L 0.5 L (1×1) (1×2) (2×1) [2] [1] θ=1.0 ML θ=1.5 ML θ=0 ML θ=? ML Surface Surface α2 α3 β1 1 L = 10-6 Torr ·s β2 α1 0.8 L 1 ML = 9.4 x 1014 atoms/cm2 0.3 L 0.3 L 0.1 L [1] Ledentu et al., Surf. Sci. 411 (1998) 123. [2] Yoshinobu et al., Phys. Rev. B 51, 4529 (1995).

  7. NRA: H Depth Distribution of Two Low-T TPD States TPD NRA 130 K α3 α1 α2 β1 β2 23.0 at.% 145 K α3 1.2 at.% Absorbed hydrogen α1: Near surface α3: Bulk > 50 nm Hs: 1.7±0.3 ML

  8. LEED, NRA, TPD: Identification of H2/Pd(110) desorption features 2000 L at Te = 130 K NRA TPD surface α1 α3 α2 β1 β2 NEW: => First revelation at Pd(110): TWO absorbed hydride states S. Ohno, M. Wilde, K. Fukutani, J. Chem. Phys., submitted.

  9. Investigation of the H2 Absorption Mechanism Absorption experiments with isotope labeled surface hydrogen: Near-surface hydride Bulk hydride prepost D2 1.0 L →H2 1000 L Te = 115 K α1 Analysis of isotope populations (TPD): => Clear difference between near-surface (α1) and bulk (α3) hydride (Also: Different normal (H2>D2)isotope effects in a1 and a3 population speeds) α3 ⇒ Two separate absorption pathways exist (!)

  10. Isotope Population of the Absorbed Hydride States Near-surface hydride (α1) Langmuir 2003, 19, 6750 Post p=0 p=0~0.5 0.2 Pre 0.5 ~4% 0.06 ML AFM image of hydride grown on Pd thin film 0.8 1 => Absorption nearminority sites (defects) Bulk hydride (α3) Dominant transfer of pre-adsorbed H below the surface (First observation) => Absorption in regular terrace area (!)* *Only Pd(110): no ‘bypassing’!

  11. Stochastic Isotope Population Model for Absorption/Desorption post n+1th absorption event pre: Npre(n) post: Npost(n) p 1-p (1-p) (p) replacement ‘bypassing’ Recursive analysis of isotope composition (1) (2) →uptake →desorption (microscopic reversibility) Evaluation of ‘bypassing’ probability (p)

  12. Absorption mechanism: Bypassing or Replacement? Near-surface hydride (α1) p=0 p=0 p=0: Replacement p=1: Bypassing 0.2 0.2 0.5 0.8 0.5 0.8 1 1 Bulk hydride (α3) Compatible Incompatible Dominant absorption mechanism: Replacement! S. Ohno, M. Wilde, K. Fukutani, J. Chem. Phys., submitted.

  13. What is the Rate Determining Step (RDS)? Potential Energy Experiment Prevailing model Monatomic in-diffusion Emono = 0.3 ~0.6 eV[3, 4] H2 absorption Eabs < 0.1 eV[1, 2] × R H2 H/Pd H 1) -0.1 eV -0.2 eV 2) Emono = 0.3~0.6 eV 3) Monatomic in-diffusion * Chemi- sorption Possible rate determining steps: -0.5 eV • H2 dissociation • Surface penetration • Bulk diffusion (inverse isotope effect (D2 faster than H2); Ediff > Eabs) [1] Okuyama et al., Surf. Sci. 401 (1998) 344.[2] Ohno et al., J. Chem. Phys., submitted. [3] Padama et al., J. Phys. Soc. Jpn. 81 (2012) 114705. [4] Ferrin et al., Surf. Sci. 606 (2012) 679.

  14. RDS: H2 Dissociation (at large qH) or Concerted Penetration Consider processes with activation energies compatible to Eabs (≤0.1 eV): → H2 dissociation (Ediss) / concerted penetration (Ec-pen) • H2 dissociation is non-activated (Ediss = 0) at bare Pd surfaces[1] • Dissociation becomes weakly activated (at high H-coverages)[2] Ediss = 0.1 eV[2,3] H2 dissociation at a H mono-vacancy* Concerted penetration: He + Hs→Hs + Hss Ec-pen≈0.06 eV[2,3] 0.5 ML H/Pd(100) Excess H atom[2] (He) • The activation barrier of penetration can be drastically lowered when it occurs concertedlywith stabilization of excess H atoms. [1] Rendulic, Surf. Sci. 208 (1989) 404. [2] Groß, ChemPhysChem 11 (2010) 1374. [3] Sakong, ChemPhysChem13, 3467.

  15. Influence of Surface Structure on H2 dissociation (atlarge qH) Peculiarity of Pd(110): Terrace-related H2 absorption (not on Pd(111)and (100))[1, 2] • H-vacancy-mediated dissociation: qvac = exp(-DGs,b/kBT) = 2x10-8 at 145 K • Pabs, max (Model) = Pdissqvac << Pabs (Experiment) = Rabs/2Zw = 5x10-4 at 145 K • => Direct gas phase H2 impact not sufficient => Involvement of mobile H2 precursors (!) Step edge-like structures stabilize molecular H2 chemisorption states* - Possible explanation - Ni(510)[3] Pd(210)[4] Pd(322)[5] Top view [5] Side view Theoretical prediction[6]: H2 may exist at Pd(110) step-like Pd(322) *constitute precursor states for H2 dissociation[4, 5] [1] Gdowski et al, J. Vac. Sci. Technol. A 5, 1103 (1987). [2] Okuyama et al, Surf. Sci. 401, 344 (1998). [3] Mårtensson et al, Phys. Rev. Lett. 57 (1986) 2045. [4] Schmidt et al, Phys. Rev. Lett. 87, 096103 (2001). [5] Ahmed et al., Appl. Surf. Sci. 257, 10503 (2011). [6] Busnengo et al, Phys. Rev. Lett. 93, 236103 (2004). (1x1)

  16. Influence of Surface Structure on H vacancy generation Defect-enhanced H2 absorption Terrace-related H2 absorption ( > 24 x per site vs. regular terraces) (peculiar vs. Pd(100), (111), (311)) Top view Side view (1x2) Widened interstitial channels (in [001]) H2 dissociation may require H-vacancies: • Rate of H-vacancy generation[1]: Rvac = 1013 s-1 exp(-DEs,ss/kBT) ≈ 103 at 145 K • => enhanced at defects due to additional ‘openness’. May also stabilize H2. • Widened penetration channels at defects and in troughs between paired Pd rows in Pd(110)(1x2)-(PR). [1] Padama et al., J. Phys. Soc. Jpn. 81 (2012) 114705. DEs,ss = 0.27 eV (110); cf. Pd(111) (0.4 eV), Pd(100) (0.41 eV) (Ferrin)

  17. Summary & Conclusions H2 H2 H2 D H H2 absorption mechanism at Pd(110)-(1x2) (paired-row): ・Two hydride states exist with different depth distributions ・TwoH absorption channels (defects + terrace, Pd(110) only) ・Hs is replaced (not bypassed), no simple in-diffusion, Eabs<0.1 eV ・RDS: H2dissociation (H-saturated Pd) or concerted penetration ・Influence of Surface Structure: H2 absorption enhanced by * “Open” penetration channels (accelerate H-vacancy generation) * Stabilization of H2 precursors (at step edge-like structures)

  18. Activation energy for hydrogen absorption at Pd(110) Arrhenius plot of a1, a3 population (Pa) H2 TDS(Te=90 K) α2 α1 α3 β1 β2 a1, a3peak area vs. exposure → Activation Energy H a1 : 0.03 eV a3 : 0.06 eV D a3 : 0.07 eV <0.1eV Much smaller than expected for monatomic H surface-to-subsurface diffusion (0.3~0.4 eV)!

  19. Isotope Population of the Near Surface Hydride (α1) Langmuir 2003, 19, 6750 Post ↓ Pre 0.06 ML AFM image of hydride grown on Pd thin film Only~4% of surface area is affected by isotope exchange: → Absorption at minority sites → defects Pre Post α1

  20. Isotope Population of the Bulk Hydride (α3) Pre ↓ Dominant transfer of pre-adsorbed H below the surface Post (First observation at a Pdsingle crystal surface)* H2 absorption takes place in the regular terrace area of Pd(110) (!) α3 * cf.) Pre-adsorbed H remains intact on Pd(111)[1] and (100)[2] (→“Bypassing”) [1] Okuyama et al., Surf. Sci. 401 (1998) 344. [2] Gdowski et al., J. Vac. Sci. Technol. A 5, 1103 (1987).

More Related