1 / 14

【 例 3】 在△ ABC 中,如图 8-2-8 , BC=9 , AC=12 , AB=15 ,∠ ABC 的平分线 BD 交 AC 于点 D , DE⊥DB 交 AB 于点 E.

【 例 3】 在△ ABC 中,如图 8-2-8 , BC=9 , AC=12 , AB=15 ,∠ ABC 的平分线 BD 交 AC 于点 D , DE⊥DB 交 AB 于点 E. ` 图 8-2-8 (1) 求证:△ ABC 是直角三角形 . (2) 设⊙ O 是△ BDE 的外接圆,求证: AC 是⊙ O 的切线 . (3) 设⊙ O 交 BC 于点 F ,连结 EF ,求 AE 的长和 EF∶AC 的值 . (2003 年 · 广西 ). 【 解析 】 (1) 根据勾股定理的逆定理,很容易证得.

ryann
Download Presentation

【 例 3】 在△ ABC 中,如图 8-2-8 , BC=9 , AC=12 , AB=15 ,∠ ABC 的平分线 BD 交 AC 于点 D , DE⊥DB 交 AB 于点 E.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 【例3】在△ABC中,如图8-2-8,BC=9,AC=12,AB=15,∠ABC的平分线BD交AC于点D,DE⊥DB交AB于点E.【例3】在△ABC中,如图8-2-8,BC=9,AC=12,AB=15,∠ABC的平分线BD交AC于点D,DE⊥DB交AB于点E. `图8-2-8 (1)求证:△ABC是直角三角形. (2)设⊙O是△BDE的外接圆,求证:AC是⊙O的切线. (3)设⊙O交BC于点F,连结EF,求AE的长和EF∶AC的值. (2003年·广西)

  2. 【解析】 (1)根据勾股定理的逆定理,很容易证得. (2)要证切线,若这条直线上有一点在圆上,通常是过这一点作半径,证明半径垂直于这条直线即可,因此此题须连结OD,证OD⊥AC. ∵∠BDE=90°∴BE是⊙O的直径 ∴OB=OD ∴ ∴OD⊥AC (3)通过平行或相似求解 OD∥BC 由∠BFE=90° EF∥AC

  3. 【例4】直线l切⊙O于点C,AD为⊙O的任一条直径,点B在直线l上,且∠BAC=∠CAD(AB与AD不在一条直线上)画出图形,试判断四边形ABCO是怎样的特殊四边形?并证明你所得到的结论.【例4】直线l切⊙O于点C,AD为⊙O的任一条直径,点B在直线l上,且∠BAC=∠CAD(AB与AD不在一条直线上)画出图形,试判断四边形ABCO是怎样的特殊四边形?并证明你所得到的结论. 【解析】本题可根据题意画出⊙O与它的切线l,再画直径AD,最后根据∠BAC=∠CAD,来确定B的位置.在探索四边形ABCO形状时,可转动直径AD,画出几个不同位置的图形进行观察,猜想,发现在一般情形下(即AD与l不行平时)四边形ABCO可能是直角梯形,而当AD∥l时,四边形ABCO变成了正方形,所以在解题时需分两种情况进行分类、讨论、证明,如下8-2-9(1),8-2-9(2)两图.

  4. AD不平行于l图8-2-9(1) AD∥l图8-2-9(2) ∠3=∠2OC∥AB 若AD不平行于l,则OCBA为直角梯形. AD∥l 若 OC∥AB 四边形ABCO是正方形 OC⊥BC

  5. 方法小结: 1.若证切线,有两条思路: ①是直线上的点不知是否在圆上的,则过圆心作该直线的垂线,根据定义证; ②是已知直线上的点在圆上,则连结圆心和这一点,根据切线的判定定理证明. 2.有切线,则常连结过切点的半径;若不知切 点,则过圆心作切线的垂线,则垂足为切点有切线,常利用弦切角计算或证明.

  6. 课时训练 1已知圆的直径为13 cm,圆心到直线l的距离为6cm, 那么直线l和这个圆的公共点个数是( ) A.0个 B.1个 C.2个 D.无法确定 C 2. 如图8-2-10,AB、AC是⊙O的两条切线,B、C是切点,∠A=50°,点P是圆上异于B、C的一动点,则∠BPC的度数是( ) A.65° B.115° 图8-2-10 C.65°或115° D.130°或50° (2003年·山西省) C

  7. 3.如图8-2-11中,AB、AC为⊙O的切线,B和C是切点,延长OB到D,使BD=OB,连结AD,如果∠DAC=78°,那么∠ADO等于( )3.如图8-2-11中,AB、AC为⊙O的切线,B和C是切点,延长OB到D,使BD=OB,连结AD,如果∠DAC=78°,那么∠ADO等于( ) 图8-2-11 A.70° B.64° C.62° D.51° B

  8. 4.如图8-2-12,BC为半圆的直径,CA为切线,AB交半圆于E,EF⊥BC于F,连结EC,则图8-2-12中与△EFC相似的三角形共有( )4.如图8-2-12,BC为半圆的直径,CA为切线,AB交半圆于E,EF⊥BC于F,连结EC,则图8-2-12中与△EFC相似的三角形共有( ) 图8-2-12 A.1个 B.2个 C.3个 D.4个 D

  9. 5.如图8-2-13,PA,PB分别切⊙O于A、B,OP交⊙O于C,下列结论中错误的是( )5.如图8-2-13,PA,PB分别切⊙O于A、B,OP交⊙O于C,下列结论中错误的是( ) 图8-2-13 A.∠1=∠2 B.PA=PB C.AB⊥OP D.PA王2=PC·PB D

  10. 6.如图8-2-14,∠AOB=30°,OA=10,那么以A为圆心,6为半径的⊙A与射线OB的关系是( )6.如图8-2-14,∠AOB=30°,OA=10,那么以A为圆心,6为半径的⊙A与射线OB的关系是( ) 图8-2-14 A.相交 B.相切 C.相离 D.不能确定 A

  11. 1.已知:△ABC内接于⊙O,过点A作直线EF 图8-2-15(1) 图8-2-15(2) (1)如图8-2-15(1),AB为直径,要使得EF是⊙O的切线,还需添加的条件(只须写出三种情况): ①AB⊥EF或 ②∠CAE=∠B或 ③∠C=∠FAB(或∠BAC+∠CAE=90°,∠EAB=∠FAB)

  12. (2)如图11-2-15(2),AB是非直径弦∠CAE=∠B,求证:EF是⊙O的切线.(2)如图11-2-15(2),AB是非直径弦∠CAE=∠B,求证:EF是⊙O的切线. 证明:连结AO并延长AO交⊙O于H,连结HC ∴∠H=∠B ∵AH是直径∴∠ACH=90° ∵∠B=∠CAE∴∠CAE+∠HAC=90° ∴HA⊥EF∴EF是⊙O的切线 2.已知:如图8-2-16(1),点P在⊙O外,PC是⊙O的切线,切点为C,PO与⊙O相交于A、B (2003年·新疆生产建设兵团)

  13. 图8-2-16(1) 图8-2-16(2) 图8-2-16(3) (1)试探求∠BCP与∠P的数量关系. (2)若∠A=30°,则PB与PA有什么数量关系? (3)∠A可能等于45°吗?若∠A=45°,则过点C的切线与AB有怎样的位置关系?(图8-2-16(2)供你解题使用) (4)若∠A>45°,则过点C的切线与直线AB的交点P的位置将在哪里?(图8-2-16(3)供你解题使用)

  14. 解:(1) ∠BCP= (2)若∠A=30°,则∠BCP=∠A=30° ∠P=30° = PA 或 PA=3PB (3)∠A可以等于45°. 如图8-2-16(2),当∠A=45°时,过点C的切线与AB平行. (4)若∠A>45°,则过点C的切线与直线AB的交点P在AB的反向延长线上.

More Related