870 likes | 1.13k Views
Vectors and Analytic Geometry in Space. Dr. Ching I Chen. z =constant. (0, y , z ). (0,0, z ). P ( x , y , z ). ( x ,0, z ). (0, y ,0). O. ( x ,0,0). y =constant. ( x , y ,0). x =constant. 11.1 Cartesian (Rectangular) Coordinates and Vectors in Space (1) Cartesian Coordinates.
E N D
Vectors and Analytic Geometry in Space Dr. Ching I Chen
z=constant (0,y,z) (0,0,z) P(x,y,z) (x,0,z) (0,y,0) O (x,0,0) y=constant (x,y,0) x=constant 11.1Cartesian (Rectangular) Coordinates and Vectors in Space(1)Cartesian Coordinates To locate points in space, it uses three mutually perpendicular coordinate axes. The x-, y-, and z-axes shown there make a right-handed coordinate frame.
z (0, 0, 5) (2,3,5) line y=3, z = 5 plane z=5 line x=2, z = 5 plane x=2 plane y=3 (0, 3, 0) (2, 0, 0) y x line x=2, y = 3 11.1Cartesian (Rectangular) Coordinates and Vectors in Space(2)Cartesian Coordinates
11.1Cartesian (Rectangular) Coordinates and Vectors in Space(3)Cartesian Coordinates To locate points in space, it uses three mutually perpendicular coordinate axes. The x-, y-, and z-axes shown there make a right-handed coordinate frame.
11.1Cartesian (Rectangular) Coordinates and Vectors in Space(4, Example 1)Cartesian Coordinates
11.1Cartesian (Rectangular) Coordinates and Vectors in Space(5, Example 2)Cartesian Coordinates
(0, 0, 1) P(x, y, z) (0, 1, 0) (1, 0, 0) O 11.1Cartesian (Rectangular) Coordinates and Vectors in Space(6)Vector in Spaces
11.1Cartesian (Rectangular) Coordinates and Vectors in Space(7)Vector in Spaces
O 11.1Cartesian (Rectangular) Coordinates and Vectors in Space(8, Example 3)Vector in Space
O 11.1Cartesian (Rectangular) Coordinates and Vectors in Space(9)Magnitude
11.1Cartesian (Rectangular) Coordinates and Vectors in Space(10)Zero and Unit Vectors
11.1Cartesian (Rectangular) Coordinates and Vectors in Space(11)Magnitude and Direction
11.1Cartesian (Rectangular) Coordinates and Vectors in Space(12, Example 4)Magnitude and Direction
11.1Cartesian (Rectangular) Coordinates and Vectors in Space(13, Example 5)Magnitude and Direction
11.1Cartesian (Rectangular) Coordinates and Vectors in Space(14, Example 6)Magnitude and Direction
11.1Cartesian (Rectangular) Coordinates and Vectors in Space(15)Distance and Spheres in Space
11.1Cartesian (Rectangular) Coordinates and Vectors in Space(16, Example 7)Distance and Spheres in Space
11.1Cartesian (Rectangular) Coordinates and Vectors in Space(17)Distance and Spheres in Space
11.1Cartesian (Rectangular) Coordinates and Vectors in Space(18, Example 8)Distance and Spheres in Space
11.1Cartesian (Rectangular) Coordinates and Vectors in Space(19, Example 9)Distance and Spheres in Space
11.1Cartesian (Rectangular) Coordinates and Vectors in Space(20)Midpoints of Line Segments
11.1Cartesian (Rectangular) Coordinates and Vectors in Space(21, Example 10) Midpoints of Line Segments
3 2 11.2 Dot Product (2, Example 1)Component Form
11.2 Dot Product (6, Theorem 1)Perpendicular (Orthogonal) Vectors and Projections
11.2 Dot Product (7, Example 3)Perpendicular (Orthogonal) Vectors and Projections
Q B A S P R Q B A S R P 11.2 Dot Product (8)Perpendicular (Orthogonal) Vectors and Projections
11.2 Dot Product (9, Example 4)Perpendicular (Orthogonal) Vectors and Projections
11.2 Dot Product (10, Exploration 1-1)Perpendicular (Orthogonal) Vectors and Projections
11.2 Dot Product (11, Exploration 1-2)Perpendicular (Orthogonal) Vectors and Projections
11.2 Dot Product (12, Exploration 1-3)Perpendicular (Orthogonal) Vectors and Projections
11.2 Dot Product (13, Exploration 1-4)Perpendicular (Orthogonal) Vectors and Projections
11.2 Dot Product (14, Exploration 1-5)Perpendicular (Orthogonal) Vectors and Projections
B A 11.2 Dot Product (15)Writing a Vector as a Sum of Orthogonal Vectors
11.2 Dot Product (16, Example 5)Writing a Vector as a Sum of Orthogonal Vectors
F D P Q 11.2 Dot Product (17)Work
F D P Q 11.2 Dot Product (18, Example 6)Work
j i k 11.3 Cross Products (4)Are Cross Products Commutative
B h= |B||sin q| q A 11.3 Cross Products (5)|AB| Is the area of a parallelogram
3-ft bar P Q 20-lb magnitude force F 11.3 Cross Products (7, Example 1)Torque
11.3 Cross Products (10, Example 2)Determinant Formula for A × B