1 / 26

Introduction

Scheduling disassembly S.M.GUPTA* and K.N. TALEB* Int.J.PROD.RES, vol.32 no 8 1999. 1. 14 자동화 실험실 송태영 * Department of Industrial Engineering and Information Systems, Northeastern University, Boston. Introduction. 기존의 MRP logic 은 Assembly oriented scheduling system 에 적용됨

saad
Download Presentation

Introduction

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Scheduling disassemblyS.M.GUPTA* and K.N. TALEB*Int.J.PROD.RES, vol.32 no 81999. 1. 14자동화 실험실송태영*Department of Industrial Engineering and Information Systems, Northeastern University, Boston

  2. Introduction • 기존의 MRP logic은 Assembly oriented scheduling system에 적용됨 • 제품 구조도를 구성하는 component 자체에 대한 수요가 존재하는 경우 root item(제품)의 필요량과 disassembly schedule을 결정에 있어서 MRP logic을 쓰고자 함이 이 논문의 목적 • 그 결과 planning horizon 내 root item 에 대한 주문시점, 필요량 외 중간level의 order release, order receipt들이 생성될 수 있다.

  3. BOM in MRP and reverse MRP • . 8 9 10 11 12 1 H(2) I(2) J(3) K(2) L(3) A ALT=1 2 4 5 6 7 3 D(3) E(1) F(1) DLT=2 G(4) DLT=1 B(4) ALT=0 C(2) ALT=1 2 3 4 5 6 7 B(4) DLT=0 C(2) DLT=1 D(3) OLT=2 E(1) OLT=3 F(1) ALT=1 G(4) ALT=3 1 8 9 10 11 12 A DLT=1 OLT=1 H(2) OLT=2 I(2) OLT=4 J(3) OLT=2 K(2) OLT=2 L(3) OLT=3 Disassembly structure Assembly structure

  4. Algorithm(I) • Terminology • Disassembly lead time • Disassembly schedule • Gross requirement, Gross requirement disassembled • Module • Sibling item • Parent item • root item • Steps of the algorithm • step0 Data input • step 1 Initialize counter i to the largest item number • step 2 If i = 1 then go to step 12 else proceed to step 3 • step 3 Set b equal to the number of brothers of item I

  5. Algorithm(II) • step4 If t is greater than the planning horizon then go to step9 else proceed to step 5 • step 5 Find the ‘On hand before disassembly’ and the ‘Net requirement’ for period t. • step 6 Find the ‘Gross requirement disassembled’ for the parent in the module. • step 7 Update inventory • step 8 Increment the time period by one unit. Go to step 4. • step 9 Find the ‘Disassemble Schedule’ of the parent in the module • step 10 Set the ‘Gross requirements ’of the parent item in the module to the ‘Disassembly schedule’ • step 11 Move to the next module. • step 12 For the root, find the ‘On hand’ ‘Net requirement ’and the ‘Time-phased planned order release’.

  6. MRP 그리고 reverse MRP • 유사점 • MPS and lead time are known with certainty - 일반적 MRP 가정. • CRP is not considered. • 차이점 • 알고 리듬이 다소 복잡 • 그 이유로 단일 자재하의 복수 수요 품목발생을 들 수 있다 • 재고량에 있어서 leaf item간의 종속성이 존재한다 • Application • 도축, dismantling operations, recycling regulations 등

  7. Example • Module G-J,K,L Item L(#12) Gross requirement 0 0 0 0 80 65 0 220 720 264 Scheduled receipts from external sources 4 7 2 8 1 6 0 2 1 2 On hand before disassembly 84 91 93 101 22 0 59 0 0 0 Net requirement 0 0 0 0 0 34 0 75 77 81 Item K(#11) Gross requirement 0 0 50 0 55 70 0 110 480 176 Scheduled receipts from external sources 0 0 5 7 1 9 0 2 3 0 On hand before disassembly 90 90 45 52 0 0 1 0 0 0 Net requirement 0 0 0 0 2 61 0 51 50 54 Item G(#7) Gross requirement disassembled 0 0 0 0 1 31 28 239 86 192 Item L(#12) INVENTORY UPDATE: Scheduled receipts from disassembly 0 0 0 0 3 93 84 717 258 576 On hand after disassembly 80 84 91 93 101 25 59 143 642 181 495 Item K(#11) INVENTORY UPDATE: Scheduled receipts from disassembly 0 0 0 0 2 62 56 478 172 384 On hand after disassembly 90 90 90 45 52 0 1 57 427 122 330 Item G(#7) Disassemble schedule 0 0 0 1 31 28 239 86 192

  8. conclusion • An algorithm which reverse MRP procedure • disassembly에 있어서 MRP logic을 이용했다는데 의의 • product structure에 있어서 root item 이 아닌component들에 대한 수요가 발생하는 경우 유용. • Discussion • assembly/disassembly operations 과 integration 고려가 바람직 • Part commonalty등을 고려한 추후 연구과제가 필요

  9. Economical evaluation of disassembly operations for recycling, remanufacturing and reuseM.R.JOHNSON* and M.H.WANG**Department of Industrial Engineering, University of Windsor, Ontario, Canada.

  10. Introduction • Recycle, remanufacture, reuse 에 대한 법제화 증가추세 • 제품디자인 시 cost, performance 외 ultimate end of the product’s life 에 대한 고려가 필요 • 독일의 경우 자동차, 전자제품에 대한 처분책임은 제작자 몫 • USCAR (auto maker’s consortium)은 recycling을 제품디자인 시 고려 • Waste disposal problem의 주요요인은 Durable product • 예를 들면 자동차, 텔레비전, PC • Three interrelated areas of disassembly and Material recovery • economic analysis • disassembly sequence generation • design for disassembly

  11. State of art • 분해, 재활용에 대한 경제성 분석에 대한 미 정의 • 휴리스틱 방법이 대부분 - 가치 있는 부품이 발견될 때 까지 분해작업. • 경제성을 고려한 분해 절차 미 수립 • assembly sequence 생성에 관한 연구는 활발(DeFazio, 1989, Heemskerk 1989, Brussels 1990, Zussman et al. 1990, Santochi 1992 등) • assembly sequence 생성시 disassembly 활동의 일부를 고려(El Maraghy 1992)

  12. Disassemble Costs A Value of discarded product B 100 % disassembled Material recovery opportunity • Material recovery opportunity (MRO)의 정의 • MRO를 고려한 가치의 두 가지 극대화 방법 • 1. Design for disassembly 를 이용(A) • 2. 분해 절차 최적화(B)

  13. 분해절차 최적화 방법의 개요 Optimal Disassembly Sequence Material & Cost info Economic Analysis Optimal Disassembly Sequence Generation PLM FINAL Level two PLM Matrix Formation PLM Matrix Reduction using disassembly analysis criteria Sequence Generation Level one Application Decision Making using Indices for Recovery vs.. Disposal.

  14. Assumption • Appropriate application area of this method • certain calculated parameters were identified • calculated parameters assume certain data will be available • The procedure is most suitable for a continuous flow of products being disassembled • sufficient volume of the same products to disassemble is need

  15. Economic Analysis • Notation • Rvk reclamation value of component k($) • mvk material value of component k($/unit weight) • df depreciation factor between 0 and 1 • Cdk disassembly cost for the kth component($) • tk disassembly time for the kth component • CL labor rate ($/unit time) • Cpk disposal cost for m component($) • CpR current disposal rate($/unit weight) • PLM recovery a decision index for recovery ($) • PLM disposal a decision index for disposal ($) • PLM final the resultant PLM generated in the cost analysis($)

  16. Cdk = tk * CL (2) • Cpk = CpR * wtk (weight) (3) • PLM recovery, k = Reclamation value(Rvk) - Disassembly cost (Cdk) + Disposal costs(Cpk) (4) • PLM disposal, k = -Cpk Disposal cost only (k=1,2,…,d1) (5) -Cpk - Cdk Disposal cost plus disassembly cost (6)

  17. Final product 1 1a 2 subassemblies s1 s2 s3 s4 2a 3 4 6 7 3a 3b 4a 6a 6b 7a 5 8 5a 5b 8a 8b Disassembly tree representation • 3 decision elements • recovery • disposal cost • disposal and disassembly • if equation (4) is positive, disassemble will be profitable

  18. Decision table • . Disassembly Part Rv Cd Cp PLM PLM PLM Decision Final Operation released recover D1 D2 PLM 1 1A 0 10 0 -10 0 -10 D2 -10 2 Sub1 - Sub2 - Sub3 - Sub4 - 2A 1 7 2 -4 -2 -9 Recover -4 3(Sub1) 3A 0 9 0 -9 0 -9 D1 0 3B 1 - 0 1 0 0 D1 0 4(Sub2) 4A 0 6 0 -6 0 -6 D2 -6 5 5A 29 8 0 21 0 -8 Recover 23 5B 2 - 0 2 0 0 Recover - 6(Sub3) 6A 2 5 5 2 -5 -10 Recover 12 6B 10 - 0 10 0 0 Recover - 7(Sub4) 7A 34 20 0 14 0 -20 Recover 14 8 8A 11 7 3 7 -3 -10 Recover 2 8B 0 - 5 5 -5 -5 Disposal - Sum PLM 31

  19. Optimal disassembly sequence generation • Profit/Loss Matrix formation • PLMij values represent the profit/loss margin of the changeover between disassembly operation i and disassembly operation j • why we make this matrix? 3 4 5 6 7 8 3 _ -6 23 12 14 2 4 0 _ 23 12 14 2 5 0 -6 _ 12 14 2 6 0 -6 23 _ 14 2 7 0 -6 23 12 _ 2 8 0 -6 23 12 14 _ D =[PLMij] = Disassembly operation #

  20. Matrix reduction - Compatibility,disposal, clustering • Material compatibility mc = is added to the Parent operation then, the matrix is 1 1a 2 s1 s2 s3 s4 3 4 6 7 8 3 _ 25 12 14 2 4 0 _ 12 14 2 6 0 25 - 14 2 7 0 25 12 _ 2 8 0 25 12 14 _ 2a 3 4 6 7 3a 3b 4a 6a 6b 7a 8 5 8a 8b PLMD2 = -6 5a 5b mc = 31

  21. Matrix reduction - compatibility,Disposal, clustering • Disposal nodes • disassembly operations within the disposal node are eliminated form the search space • similar to compatible material clusters 1 1a 2 4 6 7 8 4 _ 12 14 2 6 25 - 14 2 7 25 12 _ 2 8 25 12 14 _ s2 s3 s4 2a 4 6 7 Disposal cluster (eliminated #3) 4a 6b 7a 6a 8 Material cluster (eliminated #5) 8a 8b

  22. Matrix reduction - compatibility,disposal, Clustering • Cluster disassembly operation • the same analysis used in material compatibility PLMij =dor = ts * L 4 6 7 8 4 _ 15 23 2 6 27 _ 23 2 7 27 15 _ 2 8 25 12 14 _ do r Sequence PLM do4 = 2 6-4 2 7-4 2 do6=3 4-6 3 7-6 3 do7 = 9 4-7 9 6-7 9

  23. Model formulation(I) • Disassembly sequence problem has been formulated as scheduling n disassembly operations on a single machine • TSP • Precedence relationship • Two commodity network formulation • notation • PLM ij Represents the network flow of commodity P Represents the network flow of commodity Q Represents decision variables Objectives

  24. Model formulation(II) • constraints (1) For i = start node (2) (3) For i = start node (4) (5) (6) (7)

  25. Conclusion • Two levels of disassembly analysis • first, economic analysis • second, optimal disassembly sequence generation • reducing search space • materialcompatibility • clustering for Disposal • concurrent disassembly • LP를 이용한 disassembly sequence generation

  26. Reference list • Ashley, S., 1993, Design for the Environment. Mechanical Engineering, March. • Johnson, M. and Wang,M., 1994, Planning product disassembly for material recovery opportunities IJPR 32(5)

More Related