1 / 70

线性规划

第 8 章 最优化方法. 线性规划. 无约束规划. 非线性规划. 实验目的. 1 、了解线性规划的基本内容。. 2 、掌握用数学软件包求解线性规划问题。. 实验内容. 1 、两个引例。. 2 、用数学软件包求解线性规划问题。. 3 、 实验作业。. 两个引例.

sabina
Download Presentation

线性规划

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 第8章 最优化方法 线性规划 无约束规划 非线性规划

  2. 实验目的 1、了解线性规划的基本内容。 2、掌握用数学软件包求解线性规划问题。 实验内容 1、两个引例。 2、用数学软件包求解线性规划问题。 3、实验作业。

  3. 两个引例 问题一 :任务分配问题:某车间有甲、乙两台机床,可用于加工三种工件。假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400、600和500,且已知用三种不同车床加工单位数量不同工件所需的台时数和加工费用如下表。问怎样分配车床的加工任务,才能既满足加工工件的要求,又使加工费用最低?

  4. 设在甲车床上加工工件1、2、3的数量分别为x1、x2、x3,在乙车床上加工工件1、2、3的数量分别为x4、x5、x6。可建立以下线性规划模型: 解答

  5. 问题二: 某厂生产甲、乙两种产品,已知制成一吨产品甲需用资源A 3吨资源B 4m3;制成一吨产品乙需用资源A 2吨,资源B 6m3,资源C 7个单位。若一吨产品甲和乙的经济价值分别为7万元和5万元,三种资源的限制量分别为90吨、200m3和210个单位。试应生产这两种产品各多少吨才能使创造的总经济价值最高?(p153,例8-2) 解:这是个最优化问题,其目标为经济价值最高,约束条件为三种资源的数量有限,决策为生产甲、乙产品的数量。令生产产品甲的数量为x1,生产产品乙的数量为x2。由题意可以建立如下的线性规划模型。

  6. 故目标函数为: 约束条件为:

  7. 问题2线性规划模型: 返 回 解答

  8. 线性规划的基本算法——单纯形法 用单纯法求解时,常将标准形式化为: 1.线性规划的标准形式: 2. 线性规划的基本算法——单纯形法

  9. 引入松弛变量x3, x4, x5, 将不等式化为等式, 即单纯形标准形:

  10. 1、模型: min z=cX 2、模型:min z=cX 注意:若没有不等式: 存在,则令A=[ ],b=[ ]. 用MATLAB优化工具箱解线性规划 命令:x=linprog(c,A,b) 命令:x=linprog(c,A,b,Aeq,beq)

  11. 3、模型:min z=cX VLB≤X≤VUB 注意:[1] 若没有等式约束: , 则令Aeq=[ ], beq=[ ]. [2]其中X0表示初始点 命令:[1] x=linprog(c,A,b,Aeq,beq, VLB,VUB) [2] x=linprog(c,A,b,Aeq,beq, VLB,VUB, X0) 4、命令:[x,fval]=linprog(…) 返回最优解x及x处的目标函数值fval.

  12. 解 编写M文件如下: c=[-0.4 -0.28 -0.32 -0.72 -0.64 -0.6]; A=[0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0;0 0.02 0 0 0.05 0;0 0 0.03 0 0 0.08]; b=[850;700;100;900]; Aeq=[]; beq=[]; vlb=[0;0;0;0;0;0]; vub=[]; [x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)

  13. 问题2解答 解: 编写M文件如下: c=[-7 -5]; A=[3 2; 4 6; 0 7]; b=[90;200;210]; Aeq=[]; beq=[]; vlb=[0,0]; vub=[inf,inf]; [x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)

  14. 改写为: S.t. 例3 问题一的解答 问题

  15. 编写M文件如下: f = [13 9 10 11 12 8]; A = [0.4 1.1 1 0 0 0 0 0 0 0.5 1.2 1.3]; b = [800; 900]; Aeq=[1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1]; beq=[400 600 500]; vlb = zeros(6,1); vub=[]; [x,fval] = linprog(f,A,b,Aeq,beq,vlb,vub)

  16. 结果: x = 0.0000 600.0000 0.0000 400.0000 0.0000 500.0000 fval =1.3800e+004 即在甲机床上加工600个工件2,在乙机床上加工400个工件1、500个工件3,可在满足条件的情况下使总加工费最小为13800。

  17. 结果为: x = 14.0000 24.0000 fval = -218.0000 注:有些实际问题可能会有一个约束条件:决策变量只能取整数,如x1、x2取整数。这类问题实际上是整数线性规划问题。如果把它当成一个线性规划来解,求得其最优解刚好是整数时,故它就是该整数规划的最优解。若用线性规划解法求得的最优解不是整数,将其取整后不一定是相应整数规划的最优解,这样的整数规划应用专门的方法求解(如割平面法、分支定界法)。

  18. 实验作业 某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千克,工人20名,可获利9万元.今工厂共有原料60千克,工人150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何安排生产计划,即两种饮料各生产多少使获利最大.进一步讨论: 1)若投资0.8万元可增加原料1千克,问应否作这项投资. 2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划. 返 回

  19. 数学实验 无约束最优化 电子科技大学应用数学学院

  20. 实验目的 1、了解无约束最优化基本算法。 2、掌握用数学软件包求解无约束最优化问题。 实验内容 1、无约束优化基本思想及基本算法。 2、MATLAB优化工具箱简介 3、用MATLAB求解无约束优化问题。 4、实验作业。

  21. 无约束最优化问题 求解无约束最优化问题的的基本思想 *无约束最优化问题的基本算法 返回

  22. 求解无约束最优化问题的基本思想 标准形式: 求解的基本思想( 以二元函数为例 ) 连续可微 3 1 5

  23. 唯一极小 (全局极小) 多局部极小

  24. 最优点 (1 1) 初始点 (-1 1) 搜索过程 -1 1 4.00 -0.79 0.58 3.39 -0.53 2.60 0.23 1.50 0.00 -0.18 0.09 -0.03 0.98 0.37 0.11 0.47 0.59 0.33 0.20 0.80 0.63 0.05 0.95 0.90 0.003 0.99 0.99 1E-4 0.999 0.998 1E-5 返回 0.9997 0.9998 1E-8

  25. 无约束优化问题的基本算法 1.最速下降法(共轭梯度法)算法步骤: 最速下降法是一种最基本的算法,它在最优化方法中占有重要地位.最速下降法的优点是工作量小,存储变量较少,初始点要求不高;缺点是收敛慢,最速下降法适用于寻优过程的前期迭代或作为间插步骤,当接近极值点时,宜选用别种收敛快的算法.

  26. 2.牛顿法算法步骤: 如果f是对称正定矩阵A的二次函数,则用牛顿法经过一次迭代 就可达到最优点,如不是二次函数,则牛顿法不能一步达到极值点, 但由于这种函数在极值点附近和二次函数很近似,因此牛顿法的收 敛速度还是很快的. 牛顿法的收敛速度虽然较快,但要求Hessian矩阵要可逆,要计算二阶导数和逆矩阵,就加大了计算机计算量和存储量.

  27. 3.拟牛顿法

  28. 返回

  29. Matlab优化工具箱简介 1.MATLAB求解优化问题的主要函数

  30. 2. 优化函数的输入变量 使用优化函数或优化工具箱中其它优化函数时, 输入变量见下表:

  31. 3. 优化函数的输出变量下表:

  32. 4.控制参数options的设置 Options中常用的几个参数的名称、含义、取值如下: (1) Display: 显示水平.取值为’off’时,不显示输出; 取值为’iter’时,显示每次迭代的信息;取值为’final’时,显示最终结果.默认值为’final’. (2) MaxFunEvals: 允许进行函数评价的最大次数,取值为正整数. (3) MaxIter: 允许进行迭代的最大次数,取值为正整数.

  33. 控制参数options可以通过函数optimset创建或修改。命令的格式如下:控制参数options可以通过函数optimset创建或修改。命令的格式如下: (1) options=optimset(‘optimfun’) 创建一个含有所有参数名,并与优化函数optimfun相关的默认值的选项结构options. (2)options=optimset(‘param1’,value1,’param2’,value2,...) 创建一个名称为options的优化选项参数,其中指定的参数具有指定值,所有未指定的参数取默认值. (3)options=optimset(oldops,‘param1’,value1,’param2’, value2,...) 创建名称为oldops的参数的拷贝,用指定的参数值修改oldops中相应的参数. 例:opts=optimset(‘Display’,’iter’,’TolFun’,1e-8) 该语句创建一个称为opts的优化选项结构,其中显示参数设为’iter’, TolFun参数设为1e-8. 返回

  34. 用Matlab解无约束优化问题 常用格式如下: (1)x= fminbnd (fun,x1,x2) (2)x= fminbnd (fun,x1,x2,options) (3)[x,fval]= fminbnd(...) (4)[x,fval,exitflag]= fminbnd(...) (5)[x,fval,exitflag,output]= fminbnd(...) 其中(3)、(4)、(5)的等式右边可选用(1)或(2)的等式右边。 函数fminbnd的算法基于黄金分割法和二次插值法,它要求目标函数必须是连续函数,并可能只给出局部最优解。

  35. 主程序为: f='2*exp(-x).*sin(x)'; fplot(f,[0,8]); %作图语句 [xmin,ymin]=fminbnd (f, 0,8) f1='-2*exp(-x).*sin(x)'; [xmax,ymax]=fminbnd (f1, 0,8)

  36. 例2 对边长为3米的正方形铁板,在四个角剪去相等的正方形以制成方形无盖水槽,问如何剪法使水槽的容积最大?p156,例8-1 先编写M文件fminbndtest.m如下: function f=myfun(x) f=-(3-2*x).^2*x; 主程序调用fminbnd: [x,fval]=fminbnd('fminbndtest',0,1.5); xmax=x fmax=-fval 运算结果为: xmax = 0.5000,fmax =2.0000.即剪掉的正方形的边长为0.5米时水槽的容积最大,最大容积为2立方米.

  37. 2、多元函数无约束优化问题 标准型为:min F(X) 命令格式为: (1)x= fminunc(fun,X0);或x=fminsearch(fun,X0) (2)x= fminunc(fun,X0,options); 或x=fminsearch(fun,X0,options) (3)[x,fval]= fminunc(...); 或[x,fval]= fminsearch(...) (4)[x,fval,exitflag]= fminunc(...); 或[x,fval,exitflag]= fminsearch (5)[x,fval,exitflag,output]= fminunc(...); 或[x,fval,exitflag,output]= fminsearch(...)

  38. 说明: • fminsearch是用单纯形法寻优. fminunc的算法见以下几点说明: • [1] fminunc为无约束优化提供了大型优化和中型优化算法。由options中的参数LargeScale控制: • LargeScale=’on’(默认值),使用大型算法 • LargeScale=’off’(默认值),使用中型算法 • [2] fminunc为中型优化算法的搜索方向提供了4种算法,由 • options中的参数HessUpdate控制: • HessUpdate=’bfgs’(默认值),拟牛顿法的BFGS公式; • HessUpdate=’dfp’,拟牛顿法的DFP公式; • HessUpdate=’steepdesc’,最速下降法 • [3] fminunc为中型优化算法的步长一维搜索提供了两种算法, • 由options中参数LineSearchType控制: • LineSearchType=’quadcubic’(缺省值),混合的二次和三 • 次多项式插值; • LineSearchType=’cubicpoly’,三次多项式插 • 使用fminunc和 fminsearch可能会得到局部最优解.

  39. 例3 min f(x)=(4x12+2x22+4x1x2+2x2+1)*exp(x1) 1、编写M-文件 fun1.m: function f = fun1 (x) f = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1); 2、输入M文件myprg3.m如下: x0 = [-1, 1]; x=fminunc('fun1',x0); y=fun1(x) 3、运行结果: x= 0.5000 -1.0000 y = 1.3029e-10

  40. 2. 画出Rosenbrock 函数的等高线图,输入命令: contour(x,y,z,20) hold on plot(-1.2,2,' o '); text(-1.2,2,'start point') plot(1,1,'o') text(1,1,'solution')

  41. 3.用fminsearch函数求解 输入命令: f='100*(x(2)-x(1)^2)^2+(1-x(1))^2'; [x,fval,exitflag,output]=fminsearch(f, [-1.2 2]) 运行结果: x =1.0000 1.0000 fval =1.9151e-010 exitflag = 1 output = iterations: 108 funcCount: 202 algorithm: 'Nelder-Mead simplex direct search'

  42. 4.用fminunc 函数 (1)建立M-文件fun1.m function f=fun1(x) f=100*(x(2)-x(1)^2)^2+(1-x(1))^2 (2)求解主程序 oldoptions=optimset('fminunc') options=optimset(oldoptions,'LargeScale','off') options11=optimset(options,'HessUpdate','dfp') [x11,fval11,exitflag11,output11]=fminunc('fun1', [-1.2 2],options11)

  43. Rosenbrock函数不同算法的计算结果 可以看出,最速下降法的结果最差.因为最速下降法特别不适合于从一狭长通道到达最优解的情况.

  44. 实验作业

  45. 数学实验 非线性规划 电子科技大学应用数学学院

  46. 实验目的 1、直观了解非线性规划的基本内容。 2、掌握用数学软件求解优化问题。 实验内容 1、非线性规划的基本理论。 2、用数学软件求解非线性规划。 3、实验作业。

  47. 非线性规划 非线性规划的基本概念

More Related