240 likes | 254 Views
Bioinformatics Week 9: Simulations #3: Neural Networks. biological neurons natural neural networks artificial neural networks applications. A Biological Neuron has…. soma (the ‘body’ of the neuron) dendrites (for inputs) axon (for output) synapses.
E N D
Bioinformatics Week 9: Simulations #3: Neural Networks • biological neurons • natural neural networks • artificial neural networks • applications JYC: CSM17
A Biological Neuron has… • soma (the ‘body’ of the neuron) • dendrites (for inputs) • axon (for output) • synapses JYC: CSM17
Natural Neural Networks • nerve net • in Coelenterates • e.g. Hydra, sea anemones JYC: CSM17
The Human Brain • ~100 billion neurons • about as many trees in Amazon Rain Forest • the number of connections is about the same as the total number of leaves • up to 100 thousand inputs per cell JYC: CSM17
Artificial Neurons • McCulloch & Pitts • single neuron model (1943) • … with weights becomes Hebbian Learning • Rosenblatt’s Perceptron • multi-neuron model (1957) JYC: CSM17
Artificial Neural Networks • supervised • known classes • unsupervised • unknown classes JYC: CSM17
Supervised Neural Networks • multilayer perceptron (MLP) • used where classes are known • trained on known data • tested on unknown data • useful for identification or recognition JYC: CSM17
MLP Architecture • usually 3-layered (I:H:O) • one node for each attribute / character • input layer • one node for each attribute / character • hidden layer • variable number of nodes • output layer • one node for each class JYC: CSM17
MLP Learning Algorithms • summation is carried out by • where wi is the weight and xi is the input value for input i. JYC: CSM17
MLP Learning Algorithms • the non-linear activation function (φ) is given by • where vj is the weighted sum over n inputs for node j JYC: CSM17
MLP Learning Algorithms • backpropagation • (Werbos) Rummelhart & McClelland 1986 • contribution of each weight to the output is calculated • weights are adjusted to be ‘better’ next time…using the delta rule JYC: CSM17
MLP Learning Algorithms • delta rule • … for output nodes • … for hidden nodes JYC: CSM17
Applications • identification / recognition • fault diagnosis e.g. teabag machine • medical diagnosis • decision making JYC: CSM17
Unsupervised NNs • self-organising (feature) maps • ‘Kohonen’ maps • topological maps JYC: CSM17
Kohonen Self-Organising Feature Map (SOM, SOFM) • Teuvo Kohonen (1960s) • input layer • one node for each attribute / character • competitive ‘Kohonen’ layer JYC: CSM17
Kohonen SOM Architecture JYC: CSM17
Kohonen Learning Algorithm • initially random weights between input layer and Kohonen layer • data records (input vectors) presented one at a time • each time there is one ‘winner’ (closest Euclidean distance) • the weights connected to the winner and its neighbours are adjusted so they are closer • learning rate and neighborhood size are reduced JYC: CSM17
SOM Learning Algorithm JYC: CSM17
WebSOM of comp.ai.neuralnets JYC: CSM17
Summary • biological neurons • natural neural networks incl. the brain • artificial neural networks • applications JYC: CSM17
Useful Websites Visible Human Project http://www.nlm.nih.gov/research/visible/ Stuttgart Neural Network Simulator (Unix) http://www-ra.informatik.uni-tuebingen.de/SNNS/ Microsoft’s List of Neural Network Websites http://research.microsoft.com/~jplatt/neural.html Neural Network FAQ ftp://ftp.sas.com/pub/neural/FAQ.html WebSOM http://websom.hut.fi/websom/ JYC: CSM17
References & Bibliography • Greenfield, S. (1998). The human brain : a guided tour. - London : Phoenix, 1998. - 0753801558 • Greenfield, S. (2000)- Brain story. - London : BBC, 2000. - 0563551089 • Haykin, S. (1999). Neural networks : a comprehensive foundation , 2nd ed. – Prentice Hall, Upper Saddle River, N.J., USA. 0139083855, 0132733501 • Dayhoff, Judith E. (1990). Neural network architectures : an introduction. Van Nostrand Reinhold, New York. 0442207441 • Beale, R., Russell & Jackson, T. (1990). Neural computing : an introduction. Hilger, Bristol, UK. 0852742622 • Looney, C.G. (1997). Pattern recognition using neural networks. Oxford University Press, New York, USA. 0195079205 • Aleksander, I, & Morton, H. (1990). An introduction to neural computing. Chapman and Hall, London. - 0412377802 JYC: CSM17