1 / 10

CSNB143 – Discrete Structure

CSNB143 – Discrete Structure. Topic 1 - Set. Topic 1 - Sets. Learning Outcomes Student should be able to identify sets and its important components. Students should be able to apply set in daily lives. Students should know how to use set in its operations. Topic 1- Set. Introduction

sachi
Download Presentation

CSNB143 – Discrete Structure

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CSNB143 – Discrete Structure Topic 1 - Set

  2. Topic 1 - Sets Learning Outcomes • Student should be able to identify sets and its important components. • Students should be able to apply set in daily lives. • Students should know how to use set in its operations.

  3. Topic 1- Set Introduction • A collection of data or objects. • Each entity is called element or member, defined by symbol  • Order is not important. • Repeated element is not important. • One way to describe set is to list all the elements, in curly brackets. A = {1, 2, 3, 4, 5} B = {2, 3, 1, 4, 5} C = {1, 2, 1, 3, 4, 5} • Thus we said, sets A and B are equal. A = B , 1 A, 2 A but 7  A

  4. Topic 1 - Sets Example : Work this out :

  5. Topic 1 - Sets • Other way to describe set: • A = {x| 1  x  5} • A = {x| x is an integer from 1 to 5, both included} • A = {x| x + 1 ; 0  x < 5} • If the set has no element, it is called the empty set, denoted by {} or . • Let D = {6, 7, 8} , A and D are called then Disjoint Sets. Why? What is the example of joined set? • Set A is called finite if it has n distinct elements, where n N (nonnegative number). Example : R = {x| 1  x  5} • The number of its elements, n is called the cardinality of R, denoted by |R|= 5. • A set that is not finite is called infinite. Example : C = {x| x ≥ 1}

  6. Topic 1 - Sets Subsets • If every element of A is also an element of B, we say that A is a subset of B or that A is contained in B, written as A  B (some books use symbol ). • Sets that all its elements are part or overall of other set. • Example : A = {1, 2, 3, 4, 5} B = {1, 3, 5} C = {1, 2, 4, 6} Thus, B  A, but C A, B  A but A B • Work this out

  7. Topic 1 - Sets Power set • If A is a set, then the set of all subsets of A is called the power set of A, denoted by P (A). • A set that contains all its subset as its element. • Example: A = {1, 2} P (A) = {{1}, {2}, {1, 2}, } P (A)| = 4

  8. Topic 1 - Sets Operations on Sets Union • Let say A and B are sets. Their union is a set consisting of all elements that belong to A OR B and denoted by A  B. A  B = {x|x A or x  B} Intersections • Let say A and B are sets. Their intersection is a set consisting of all elements that belong to both A AND B and denoted by A  B. A  B = {x|x A and x  B}

  9. Topic 1 - Sets Operations on Sets Complement • Let say setU is a universal set. U – A is called the complement of A, denoted by A’ (some book use A) A’ = { x|x A} • If A and B are two sets, the complement of B with respect to A is a set that contain all elements that belong to A but not to B, denoted by A – B. Find A – B, A – C, C – A, C – B Symmetric Difference • Let say A and B are two sets. Their symmetric difference is a set that contain all elements that belong to A OR B but not to both A and B, denoted by A  B. A  B = {x|(x  A and x  B) or (x  B and x  A)} Find P R

  10. Topic 1 - Sets Venn Diagram • Diagram that is used to show the relations between sets. • Example : Given set A = {1, 2, 3, 4} and B = {1, 3, 5, 7, 9} • Show using Venn diagram: a) A  B and A  B b) A  B = A B – (A  B) c) A’ and B’ d) A – B and B - A

More Related