1 / 26

Introduction to Statistics for Social Sciences - Fall Lecture Series

Join the PAS Room 201 for the Fall 2012 lecture series on statistics for the social sciences. Learn about questionnaire design, sampling techniques, and statistical parameters. Enhance your understanding of peer review processes and practical applications in business and science. Explore topics such as random and systematic sampling, stratified sampling, and more. Attend the Monday, Wednesday, and Friday sessions from 10:00 to 10:50 am. Stay updated with essential readings and homework assignments. Engage in peer reviews to build valuable feedback skills. Make the most of this educational opportunity to refine your statistical knowledge.

sadie
Download Presentation

Introduction to Statistics for Social Sciences - Fall Lecture Series

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Please click in My last name starts with a letter somewhere between A. A – D B. E – L C. M – R D. S – Z

  2. s c r e e n s c r e e n Lecturer’s desk Row A Row A 13 12 11 10 9 8 7 17 16 15 14 Row A 19 18 4 3 2 1 6 5 Row B 14 13 12 11 10 9 15 Row B 8 7 20 4 3 2 1 19 18 17 16 6 5 Row B Row C 4 3 2 1 15 14 13 12 11 10 9 19 18 17 16 Row C 8 7 6 5 21 20 Row C Row D 20 19 18 17 22 21 4 3 2 1 16 15 14 13 12 11 10 9 Row D Row D 8 7 6 5 21 20 19 18 Row E 23 22 4 3 2 1 6 5 16 15 14 13 12 11 10 9 Row E Row E 8 7 17 21 20 19 18 Row F 23 22 4 3 2 1 Row F 6 5 17 16 15 14 13 12 11 10 9 Row F 8 7 22 21 20 19 17 16 15 14 13 12 11 10 9 Row G Row G 8 7 24 23 18 4 3 2 1 6 5 Row G 16 20 19 18 17 Row H 22 21 4 3 2 1 15 14 13 12 11 10 9 Row H 8 7 6 5 Row H table Row J Row J 25 24 23 22 1 18 table 9 6 26 5 20 19 21 13 8 7 14 26 25 24 23 4 3 2 1 27 5 20 22 21 14 13 12 11 10 9 6 18 17 16 15 Row K Row K 8 7 19 27 26 25 24 4 3 2 1 19 18 28 5 20 23 22 21 14 13 12 11 10 9 6 15 Row L Row L 8 7 17 16 4 3 2 1 27 26 25 24 22 21 15 Row M Row M 5 28 23 20 19 14 13 12 11 10 9 6 18 17 16 8 7 22 21 29 28 27 26 4 3 2 1 20 23 19 15 14 18 17 16 25 24 30 5 13 12 11 10 9 6 Row N Row N 8 7 29 28 27 26 22 21 30 4 3 2 1 20 23 19 15 14 18 17 16 25 24 5 13 12 11 10 9 6 Row P Row P 8 7 29 28 27 26 39 38 37 36 30 4 3 2 1 32 31 23 22 21 - 15 14 25 24 40 5 33 35 34 13 12 11 10 9 6 Row Q 8 7 Physics- atmospheric Sciences (PAS) - Room 201

  3. Use this as your study guide By the end of lecture today9/5/12 Process of Peer Review Questionnaire design and evaluation Simple versus systematic random sampling Sample frame and randomization Stratified sampling, cluster sampling, judgment sampling Snowball sampling, convenience sampling

  4. Introduction to Statistics for the Social SciencesSBS200, COMM200, GEOG200, PA200, POL200, or SOC200Lecture Section 001, Fall, 2012Room 201 Physics and Atmospheric Sciences (PAS)10:00 - 10:50 Mondays, Wednesdays & Fridays. Welcome Please double check – Allcell phones other electronic devices are turned off and stowed away http://www.youtube.com/watch?v=oSQJP40PcGI

  5. Lab sessions Everyone will want to be enrolled in one of the lab sessions No labs next week We will resume next week

  6. Schedule of readings Before next exam (September 21st): Please read chapters 1 - 4 in Ha & Ha textbook Please read Appendix D, E & F onlineOn syllabus this is referred to as online readings 1, 2 & 3 Please read Chapters 1, 5, 6 and 13 in Plous Chapter 1: Selective Perception Chapter 5: Plasticity Chapter 6: Effects of Question Wording and Framing Chapter 13: Anchoring and Adjustment

  7. Homework due – Monday (September 10th) On class website: please print and complete homework worksheet #5

  8. Review of Homework Worksheet Must be complete and must be stapled

  9. Peer review Please exchange questionnaires with someone (who has same TA as you) and complete the peer review handed out in class You have 10 minutes Peer review is an important skill in nearly all areas of business and science. Please strive to provide productive, useful and kind feedback as you complete your peer review

  10. Review of Homework Worksheet Hand in the peer review with the questionnaire *Hand them in together*

  11. Population versus Sample Population: Everyone you want to describe Sample: Subset of the population

  12. Sample versus census How is a census different from a sample? Census measures each person in the specific population Sample measures a subset of the population and infers about the population – representative sample is good What’s better? Use of existing survey data U.S. Census Family size, fertility, occupation The General Social Survey Surveys sample of US citizens over 1,000 items Same questions asked each year

  13. Population (census) versus sampleParameter versus statistic Parameter – Measurement or characteristic of the population Usually unknown (only estimated) Usually represented by Greek letters (µ) pronounced “mu” pronounced “mew” Statistic – Numerical value calculated from a sample Usually represented by Roman letters (x) pronounced “x bar”

  14. Simple random sampling: each person from the population has an equal probability of being included Sample frame = how you define population Let’s take a sample …a random sample Question: Average weight of U of A football player Sample frame population of the U of A football team Pick 24th name on the list Random number table – List of random numbers Or, you can use excel to provide number for random sample =RANDBETWEEN(1,110) Pick 64th name on the list(64 is just an example here) 64

  15. Systematic random sampling: A probability sampling technique that involves selecting every kth person from a sampling frame You pick the number Other examples of systematic random sampling 1) check every 2000th light bulb 2) survey every 10th voter

  16. Stratified sampling: sampling technique that involves dividing a sample into subgroups (or strata) and then selecting samples from each of these groups - sampling technique can maintain ratios for the different groups Average number of speeding tickets 12% of sample is from California 7% of sample is from Texas 6% of sample is from Florida 6% from New York 4% from Illinois 4% from Ohio 4% from Pennsylvania 3% from Michigan etc Average cost for text books for a semester 17.7% of sample are Pre-business majors 4.6% of sample are Psychology majors 2.8% of sample are Biology majors 2.4% of sample are Architecture majors etc

  17. Cluster sampling: sampling technique divides a population sample into subgroups (or clusters) by region or physical space. Can either measure everyone or select samples for each cluster Textbook prices Southwest schools Midwest schools Northwest schools etc Average student income, survey by Old main area Near McClelland Around Main Gate etc Patient satisfaction for hospital 7th floor (near maternity ward) 5th floor (near physical rehab) 2nd floor (near trauma center) etc

  18. Convenience sampling: sampling technique that involves sampling people nearby. A non-random sample and vulnerable to bias Snowball sampling: a non-random technique in which one or more members of a population are located and used to lead the researcher to other members of the population Used when we don’t have any other way of finding them Also vulnerable to biases

  19. Judgment sampling: sampling technique that involves sampling people who an expert says would be useful. A non-random sample and vulnerable to bias Focus group: members can be randomly or not randomly selected. Mediator gathers opinion and information from group. Information can be qualitative or quantitative

  20. So far, Measurement: observable actions Theoretical constructs: concepts (like “humor” or “satisfaction”) Operational definitions Validity and reliability Independent and dependent variable Random assignment and Random sampling Within-participant and between-participant design Single blind (placebo) and double blind procedures Continuous versus discrete Categorical versus Numerical data

  21. Let’s try one A study explored whether eating carrots really improves vision. Half of the subjects ate a package of carrots everyday for 3 months while the other group did not. Then, they tested the vision for all of the subjects. The independent variable in this study was a. the performance of the subjects on the vision exam b. the subjects who ate the carrots c. whether or not the subjects ate the carrots d. whether or not the subjects had their vision tested

  22. Let’s try one A study explored whether eating carrots really improves vision. Half of the subjects ate a package of carrots everyday for 3 months while the other group did not. Then, they tested the vision for all of the subjects. The dependent variable in this study was a. the performance of the subjects on the vision exam b. the subjects who ate the carrots c. whether or not the subjects ate the carrots d. whether or not the subjects had their vision tested

  23. Let’s try one A study explored whether eating carrots really improves vision. Half of the subjects ate a package of carrots everyday for 3 months while the other group did not. Then, they tested the vision for all of the subjects. This experiment was a a. within participant experiment b. between participant experiment c. mixed participant experiment d. non-participant experiment

  24. Let’s try one When Martiza was preparing her experiment, she knew it was important that the participants not know which condition they were in, to avoid bias from the subjects. This is called a _____ study. She also was careful that the experimenters who were interacting with the participants did not know which condition those participants were in. This is called a ____ study. a. between participant; within participant b. within participant; between participant c. double blind design; single blind d. single blind; double blind design

  25. Thank you! See you next time!!

More Related