1 / 63

Sensor Network II

Sensor Network II. 2002. 3. 26 Lee, chunseung Codesign And Parallel processing laboratory, School of Computer Science and Engineering, SNU cslee@iris.snu.ac.kr http://peace.snu.ac.kr Tel. 880-7292. Outline. What is the “ sensor networks ” ? Application of sensor network

saeran
Download Presentation

Sensor Network II

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Sensor Network II 2002. 3. 26 Lee, chunseung Codesign And Parallel processing laboratory, School of Computer Science and Engineering, SNU cslee@iris.snu.ac.kr http://peace.snu.ac.kr Tel. 880-7292

  2. Outline • What is the “sensor networks” ? • Application of sensor network • Characteristic of sensor network • Issues for sensor network • Transmission Control Scheme • Listening mechanism • Backoff mechanism • Contention Based mechanism • Rate Control mechanism • CSMA schemes • Simulation and Empirical results

  3. Outline • Biomedical Sensor • Introduction • Biomedical application • Preliminary results • Two dimensional analysis • Three dimensional analysis • Wireless Communication Protocol • Cluster based approach • Tree based approach • Performance Comparison • Conclusion • Side dishes • Low power technology in system level • Referances

  4. What is the “Sensor Networks” • Ad hoc network of sensors • data event traffic • Emerging area of mobile computing • Primary Function • Sensory information • temperature, humidity • Propagate this data block into the infrastructure

  5. Application of SN • Internet Security Systems’s • RealSecure, Solaris, WindowsNT • 보안 침입 탐지 • EUCOM(미유럽사령부, European Command) • 합동 원격 생물학 조기 경보 체계 • JBREWS(Joint Biological Remote Early Warning System) • JBPDS(Joint Biological Point Detection System) • 공군기지, 항구, 배, 해외 주둔군에 배치 • 개인사병, 헬기, 소형 무인 정찰 비행기 • 부대에서 개인의 보호 수준을 결정하기 위한 첩보 및 기상자료를 송출 • 3kg, 100km

  6. Application of SN • Virtual Keyboard • Each fingernail has a sensor for finger-moving • Or using Sensing board

  7. Application of SN • Monitor pollutions

  8. Application of SN

  9. Application of SN Odyssey is a low-cost AUV specifically developed by the MIT AUV – Autonomous Underwater Vehicles

  10. Application of SN

  11. A Transmission Control Scheme for Media Access in Sensor Networks

  12. Characteristics of SN • A. Woo, D. E. Culler, “A Transmission Control Scheme for Media Access in Sensor Networks”, In MOBICOM, July, 2001 • Unusual application requirements • highly constrained resources • Small packet size • typically 10 bytes or below • Deep ad hoc multihop dynamic topology • A correlated operating • Short periods the traffic may be very intense • Periodic rendezvous

  13. Issues for SN in this paper • Motivation • The design space is different from traditional mobile computer networks • SN needs tight constraints • computational power • Storage • Energy resource • Radio technology • Targets • High channel utilization • Communication efficiency on energy • Fair bandwidth allocation • Propose an adaptive rate control(ARC) mechanism

  14. Listening mechanism • Ethernet environment • CSMA/CD • Very effective and simple • Collision detection is not possible in wireless network without additional circuitry • The radio must be on to listen during backoff • More energy consuming • To conserve energy, it have to shorten the length of carrier sensing • IEEE 802.11  radio off

  15. Backoff Mechanism • A widely used in media access control to reduce contention • Binary backoff algorithm • To restrain a node from accessing the channel

  16. Contention Based Mechanism • Widely used in many MAC protocols • RTS-CTS-ACKs • RTS (Request To Send) • CTS (Clear To Send) • For sensor networks where packet size is small, they can constitute a large overhead • RTS-CTS-ACKs handshaking • Up to 40% • A contention control scheme for sensor networks should use a minimum number of control packets

  17. Contention Based Mechanism • RTS – CTS handshaking • First send a RTS packet to it parent and waits for a CTS reply • If no CTS is received for a timeout period (2 CTS packet time), the node will enter backoff with a binary exponential increasing backoff window • If no CTS has been received after five retries, the transmission will be dropped • If a node hears a CTS before any of its own transmission, it will defer transmission for one packet time to avoid corrupting the traffic.

  18. Rate Control Mechanism • The tension between originating traffic and route-thru traffic has a direct impact in achieving fairness goal. • This paper propose an mechanism which adapts the rate of transmission without the use of any MAC control packets • Fairness channel allocation • Channel Capacity / N , where N is total number of node in the entire network • The spontaneous ad hoc of sensor networks make impractical • Proposed transmission rate control mechanism • Linear increase • Multiplicative decrease

  19. Rate Control Mechanism • S : application transmission rate • S*p : the actual rate of originating data. p [0, 1] • p : probability of transmission • : a constant • : multiplicative decrease a factor where 0 < < 1 • route = 1.5 * originate • originate = route / (n + 1) controls the penalty given a failure of transmission S : current rate if(S is acceptance) { p = p + ; S = S * p; } else { p = p * ; S = S * p; }

  20. CSMA schemes

  21. Simulation Setting • Packet size • 30 byte • Manchester encoding • Channel capacity • 10 kbps, 20.8 packet/sec • 16bit CRC error detection for corrupted packet • 각 노드는 근소한 시작시간을 가지고 주기적으로 초당 5 packet을 보냄 • 채널용량이 20.8packet/s이므로 traffic load는 4번째 노드이상에서 채널용량을 초과할 것이다.(saturation)

  22. Constraint - high channel Utilization(bandwidth) - energy efficiency - fairness Utilization and Bandwidth of Channel

  23. 실험 결과 명시적인 ACK을 사용하는 802.11 보다 더 좋은 성능을 나타냈다. 특히, constant listen period와 no random delay를 갖는 3개의 스킴은 가장 높은 bandwidth를 나타냄. 하지만 그들은 모두 robust하지 않다. (원인 : 2개의 dip  repeated collision) 또 결과들을 살펴보면, 802.11을 제외한 모든 스킴들은 채널용량의 75%정도(15.6 packet/s의 bandwidth)의 이용률을 보였다. 20.8*0.75 = 15.6 packet/s 결론적으로, 성능면에서는 no random delay와 constant listen이 좋긴 하지만 robust하지 않기 때문에 매력이 없다. Randomness를 사용하는 backoff 메커니즘은 repeated collision을 방지하는데 효과가 좋다.

  24. 실험 결과 • 모든 노드가 동시 전송(최악의 경우) • no random delay와 constant listening window를 가지는 3개의 스킴은 zero bandwidth가 나왔다. (repeated collision) • 802.11은 초기에 5 packet/s로 시작하였고, 그림 4보다 낮은 throughput을 보였다. • 802.11이 no random delay와 constant listening 주기를 가지고 있을지라도 ACK가 collision 감지와 backoff 메커니즘을 트리거하기 때문이다. • 나머지 커브들은 random delay를 가지거나 random listening 주기를 가지는 스킴들이다. • 결론, • 1 . Randomness를 갖는 알고리즘들은 좋은 채널이용률과 high load를 잘 견뎌낸다. • Performance는 backoff 메커니즘에 영향을 받지 않는다. • Backoff 메커니즘을 가지지 않는 ND_RAND 조차도 다른 6개의 스킴들 만큼이나 잘 동작한다. • Pre-collision 단계안에서의 randomness는 robustness를 위해 필수적이다.

  25. Constraint - high channel Utilization(bandwidth) - energy efficiency - fairness Energy Efficiency

  26. Simulation Setting • In examining the energy consumed in communication • Transmitting and receiving packet • During listening period • The former is determined primarily by the traffic load and the latter is primarily determined by the CSMA protocol

  27. 실험 결과 802.11이 가장 안 좋은 효율을 보임 이유는, constant listening 주기를 가지고 있을지라도, backoff동안 채널을 항상 listening하고 있어야 되기 때문이다. constant listening 주기를 가지는 scheme들이 좋고, 10 uJ/packet으로 네트워크의 크기에 관계없다. random listening 주기를 가지는 스킴들은 40 uJ/packet으로 다소 비싸다. 특이한 점은 ND_RAND는 네트워크의 크기가 증가할 수록 에너지가 증가한 이유는, backoff가 없기 때문이다. 대부분 에너지 효율적인 스킴들은 constant listening 주기와 random delay이고, robustness를 제공한다.

  28. Constraint - high channel Utilization(bandwidth) - energy efficiency - fairness Fairness

  29. 실험 결과 앞 bandwidth와 energy 효율성 측면에서 모두 좋은 random delay, constant listening 주기를 갖는 3개의 스킴을 비교해 보자. 그림 7 위의 3 스킴의 표준편차 : 0.25 packet/s 이고, 트래픽이 증가 할수록 감소하는 경향을 보인다. 결국, backoff 메커니즘의 차이는 uniform한 부하면에서 보면, fairness가 별 중요치 않다. 그림 8 802.11은 unfair하다. 표준편차가 1 packet/s이상이다. 이유는, 다른 것보다 이른 전송시간을 갖는 노드가 채널을 capturing하기 때문이다.(capturing effect)

  30. 실험 결과 표 3. 그림 3에서의 node 0을 multihop으로 구성했을 때 node 10에 대한 bandwidth를 기준으로 표준화시킨 값이다. Send rate를 보면 노드가 10일때, 2 packet/s이고, 노드수가 1일때 10이므로 산술적으로 노드 1,2,3은 노드 10에 비해서 500% 정도가 측정되야 하나 802.11을 제외한 3 scheme들은 500%이상이 측정되었다. Backoff 메커니즘은 proportional fairness에 영향을 준다.

  31. Phase-shift The phase of the sensor sampling interval is shifted by a random amount in response to transmission failure. 실험 결과 Phase-shift를 적용한 802.11 스킴은 bandwidth, fairness 모두 많이 향상되었다.

  32. Empirical Results on singlehop Random delay를 가지는 3개의 스킴 실측하여 시뮬레이션과 비교 실험한 실측치도 채널 용량의 70%까지 상승했다. (performance측면에서)

  33. Figure 12. The average energy consumption - the prediction of around 10uJ/packet ( 10 ~ 40 uJ/packet at simulation) Figure 13. The fairness comparison of throughput - the deviation among the three schemes vary from 0.3 ~ 0.5 packet/s (0.25 packet/s at simulation)

  34. Multihop Scenario Under simulation Maximum uniform origination rate  20/24 = 0.83 packet/s In the implementation, limit origination rate  15.7/24 = 0.66 packet/s

  35. Simulation Measurements • The simulation runs with each node sending packets to the base station at rate of 4 packet/s • Runs at the same time

  36. 그림 15. ARC 스킴이 가장 좋은 성능을 나타냄. 802.11과 RTS/CTS 스킴은 레벨이 2 이하 일 때 전혀 packet을 발생치 않았다.(hidden node 문제) 그림 16. fairness에 대한 편차를 , 값을 변경하면서 측정 ARC가 가장 좋다. 가 편차에 많은 영향을 준다.(?)

  37. 그림 17. 값이 낮을수록 (큰 페널티를 부과) 낮은 bandwidth를 나타낸다. 802.11과 D_CONST_FIX가 더 높은 bandwidth를 제공(단, base station과 근접해 있어야 한다) 그림 18. 값이 낮을수록 에너지 효율성은 증가

  38. Empirical Result on Multihop 그림 20. 비교적 시뮬레이션 결과와 비슷 ARC도 D_CONST_FIX보다 더 fair하다.

  39. Conclusion 결론적으로, randomness를 사용하는 backoff 메커니즘은 repeated collision을 방지하는데 효과가 좋고, 에너지 효율적인 면에서는 constant listening 주기와 random delay이고, robustness를 제공한다. Phase-shift방법을 사용하면 bandwidth와 fairness를 보다 향상 시킬 수 있다. ARC(Adaptive Rate Control) 방법은 명시적인 control packet 없이 fairness를 효과적으로 동작시킬 수 있다.

  40. Research Challenge In Wireless Networks of Biomedical Sensors

  41. Introduction • Constraint • Limited power, computational capacities • Issues • Bio-compatibility • Fault tolerant • Energy efficient, • Scalable design • A smart sensor • Physical, chemical, biological sensors combined with integrated circuits • The examples of smart sensors • Combat scenarios to track troop movements • Mine robots, Pollution detection • Biomedical application • ‘A drop in the bucket’

  42. Biomedical applications • Artificial Retina

  43. Biomedical applications

  44. Biomedical applications • Other applications • Glucose Level Monitors • Organ Monitors • Cancer Detectors • General Health Monitors

  45. Preliminary results • Power-efficient Topology • A function of the distance and number of bits transmitted. • Trade off • The number of neighbors and the total power dissipation • Two Dimensional Analysis • Three dimensional Analysis • Wireless Communication Protocols • Cluster-based Approach • Tree-based Approach • Performance Comparison

  46. Two dimensional analysis • As the number of neighbors increases the number of alternative paths increases. • Interior routing • A route across the diameter of the network • Edge routing • The path travels along the edges of the network

  47. Two dimensional analysis Edge routing dissipates less power than interior routing in all cases except for 3 neighbors

  48. Two dimensional analysis The power dissipated between the source and destination for a message spanning the diameter of the network for networks with 3 and 6 neighbors Increasing the number of neighbors decrease the number of transmissions and the total power dissipated in the system

More Related