1 / 22

Lecture 5- Part 2

Lecture 5- Part 2. Trigonometric Functions. Trigonometric Functions. Solution. Solution. Graphs of Trigonometric Functions. 2. The range is the set of y values such that . . 5. Each function cycles through all the values of the range over an x -interval of .

sahkyo
Download Presentation

Lecture 5- Part 2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lecture 5- Part 2 Trigonometric Functions

  2. Trigonometric Functions

  3. Solution

  4. Solution

  5. Graphs of Trigonometric Functions 2. The range is the set of y values such that . 5. Each function cycles through all the values of the range over an x-interval of . Properties of Sine and Cosine Functions The graphs of y = sin x and y = cos x have similar properties: 1. The domain is the set of real numbers. 3. The maximum value is 1 and the minimum value is –1. 4. The graph is a smooth curve. 6. The cycle repeats itself indefinitely in both directions of thex-axis. Properties of Sine and Cosine Functions

  6. 2. The range is the set of y values such that . 5. Each function cycles through all the values of the range over an x-interval of . Properties of Sine and Cosine Functions Properties of Sine and Cosine Functions The graphs of y = sin x and y = cos x have similar properties: 1. The domain is the set of real numbers. 3. The maximum value is 1 and the minimum value is –1. 4. The graph is a smooth curve. 6. The cycle repeats itself indefinitely in both directions of thex-axis.

  7. x 0 sin x 0 1 0 -1 0 y = sin x y x Sine Function Graph of the Sine Function To sketch the graph of y = sin x first locate the key points.These are the maximum points, the minimum points, and the intercepts. Then, connect the points on the graph with a smooth curve that extends in both directions beyond the five points. A single cycle is called a period.

  8. x 0 cos x 1 0 -1 0 1 y = cos x y x Cosine Function Graph of the Cosine Function To sketch the graph of y = cos x first locate the key points.These are the maximum points, the minimum points, and the intercepts. Then, connect the points on the graph with a smooth curve that extends in both directions beyond the five points. A single cycle is called a period.

  9. x 0  2 3 0 -3 0 3 y = 3 cos x max x-int min x-int max y (0, 3) ( , 3) x ( , 0) ( , 0) ( , –3) Example: y = 3 cos x Example: Sketch the graph of y = 3 cos x on the interval [–, 4]. Partition the interval [0, 2] into four equal parts. Find the five key points; graph one cycle; then repeat the cycle over the interval.

  10. y y = 2sin x x y = sin x y = sin x y = –4 sin x reflection ofy = 4 sin x y = 4sin x Amplitude The amplitude of y = a sin x (or y = a cos x) is half the distance between the maximum and minimum values of the function. amplitude = |a| If |a| > 1, the amplitude stretches the graph vertically. If 0 < |a| > 1, the amplitude shrinks the graph vertically. If a < 0, the graph is reflected in the x-axis.

More Related