1 / 85

Sept. 27, 2013 , Athens , Greece

ECO-BOND GRAPHS An Energy-Based Modeling and Simulation Framework for Complex Dynamic Systems with a focus on Sustainability and Embodied Energy Flows. Dr. Rodrigo Castro ETH Zürich, Switzerland. University of Buenos Aires & CIFASIS-CONICET, Argentina. Sept. 27, 2013 , Athens , Greece.

said
Download Presentation

Sept. 27, 2013 , Athens , Greece

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ECO-BOND GRAPHS • An Energy-Based Modeling and Simulation Framework • for Complex Dynamic Systems • with a focus on Sustainability and Embodied Energy Flows • Dr. Rodrigo Castro ETH Zürich, Switzerland.University of Buenos Aires & CIFASIS-CONICET, Argentina. Sept. 27, 2013, Athens, Greece The 10th International Multidisciplinary Modelling & Simulation Multiconference The 1st Int’l. Workshop on Simulation for Energy, Sustainable Development & Environment

  2. Agenda • Problem formulation • Emergy tracking & Complex Dynamics Systems • Possible approaches • Our approach • Networked Complex Processes • 3-faceted representation of energy flows • The Bond Graph formalism • The new Eco Bond Graphs • Definition • Examples • Simulation results • Conclusions

  3. System Theoretic Approach Problem formulation • Complex Dynamics Systems • Global scale socio-natural processes • We live in a nonlinear world, mostly away from equilibrium

  4. System Theoretic Approach Problem formulation • Complex Dynamics Systems • Global scale socio-natural processes • We live in a nonlinear world, mostly away from equilibrium

  5. System Theoretic Approach Problem formulation • Complex Dynamics Systems • Global scale socio-natural processes • We live in a nonlinear world, mostly away from equilibrium 

  6. System Theoretic Approach Problem formulation • Complex Dynamics Systems • Global scale socio-natural processes • We live in a nonlinear world, mostly away from equilibrium 

  7. Storages and Processes Problem formulation • Flows of Mass and Energy • Each process can abstract several internal sub processes

  8. Storages and Processes Problem formulation • Flows of Mass and Energy • Each process can abstract several internal sub processes

  9. Storages and Processes Problem formulation • Flows of Mass and Energy • Each process can abstract several internal sub processes

  10. Storages and Processes Problem formulation • Flows of Mass and Energy • Each process can abstract several internal sub processes

  11. Storages and Processes Problem formulation • Flows of Mass and Energy • Each process can abstract several internal sub processes “Grey Energy”

  12. Storages and Processes Problem formulation • Flows of Mass and Energy • Each process can abstract several internal sub processes • We want to model systematically this type of systems • Structural approach  Sustainability properties “Grey Energy”

  13. Considering energy losses Possible approaches • Sankey Diagrams • Static (snapshot-like) World Energy Flow.

  14. Considering energy losses Possible approaches • Sankey Diagrams • Static (snapshot-like) World Energy Flow.

  15. Considering energy losses Possible approaches • Energy System Language (H.T. Odum) • Account for dynamicsDifferential Eqns.

  16. Considering energy losses Possible approaches • Energy System Language (H.T. Odum) • Account for dynamicsDifferential Eqns.

  17. Considering energy losses Possible approaches • Energy System Language (H.T. Odum) • Account for dynamicsDifferential Eqns.

  18. Considering energy losses Possible approaches • Energy System Language (H.T. Odum) • Account for dynamicsDifferential Eqns.

  19. Networked processes Our approach • Multi Input/Multi Output Processes • Including recycling paths

  20. Networked processes Our approach • Multi Input/Multi Output Processes • Including recycling paths

  21. Networked processes Our approach • Multi Input/Multi Output Processes • Including recycling paths

  22. Focus on mass flows Our approach • 3-Faceted representation

  23. Focus on mass flows Our approach • 3-Faceted representation Balance: Mass and Energy

  24. Focus on mass flows Our approach • 3-Faceted representation Balance: Mass and Energy Tracking: Emergy

  25. Focus on mass flows Our approach • 3-Faceted representation Balance: Mass and Energy Tracking: Emergy

  26. Basic formulation Our approach • Minimum required formulation • To achieve the modeling goal systematically • How do we formalize and generalize this structure ?

  27. Bondgraphic approach The Bond Graph Formalism e f • Bondgraphis a graphicalmodelingtechnique • Rooted in the tracking of power [Joules/sec=Watt] • Representedbyeffort variables (e) and flow variables (f) e: Effort f: Flow Power = e · f

  28. Bondgraphic approach The Bond Graph Formalism e f • Bondgraphis a graphicalmodelingtechnique • Rooted in the tracking of power [Joules/sec=Watt] • Representedbyeffort variables (e) and flow variables (f) • Goal: • Sound physical modeling of generalized flows of energy • Self checking capabilities for thermodynamic feasibility • Strategy: • Bondgraphic modeling of phenomenological processes • Including emergy tracking capabilities e: Effort f: Flow Power = e · f

  29. Energy domains The Bond Graph Formalism e f • Bondgraphismulti-energydomain

  30. Energy domains The Bond Graph Formalism e f • Bondgraphismulti-energydomain

  31. Causal Bonds The Bond Graph Formalism e f • As every bond defines two separate variables • The effort eand the flow f • We need two equations to compute values for these two variables • It is always possible to compute one of the two variables at each side of the bond.

  32. Causal Bonds The Bond Graph Formalism e f • As every bond defines two separate variables • The effort eand the flow f • We need two equations to compute values for these two variables • It is always possible to compute one of the two variables at each side of the bond. • A vertical barsymbolizes the side where the flow is being computed.

  33. Junctions The Bond Graph Formalism e2 e2 e2 = e1 e3 = e1 f1 = f2+ f3 f2 f2  e1 e1 0 1 e3 f1 f1 e3 f3 f3 f2= f1 f3 = f1 e1 = e2+ e3  • Local balances of energy

  34. Junctions The Bond Graph Formalism e2 e2 e2 = e1 e3 = e1 f1 = f2+ f3 f2 f2  e1 e1 0 1 e3 f1 f1 e3 f3 f3 f2= f1 f3 = f1 e1 = e2+ e3  • Local balances of energy Junctions of type 0 have only one flow equation, and therefore, they must have exactly onecausality bar.

  35. Junctions The Bond Graph Formalism e2 e2 e2 = e1 e3 = e1 f1 = f2+ f3 f2 f2  e1 e1 0 1 e3 f1 f1 e3 f3 f3 f2= f1 f3 = f1 e1 = e2+ e3  • Local balances of energy Junctions of type 0 have only one flow equation, and therefore, they must have exactly onecausality bar. Junctions of type 1have only one effort equation, and therefore, they must have exactly (n-1)causality bars.

  36. Example I The Bond Graph Formalism • Anelectricalenergydomainmodel Electrical Circuit

  37. Example I The Bond Graph Formalism • Anelectricalenergydomainmodel Electrical Circuit Resistor Inductor Resistor VoltageSource Capacitor

  38. Example I The Bond Graph Formalism • Anelectricalenergydomainmodel Bondgraphic equivalent Electrical Circuit Resistor Inductor Resistor VoltageSource Capacitor

  39. Example I The Bond Graph Formalism U0.f L1.f R1.f C1.f R1.f R2.f R1.f Bondgraphic model U0.e R1.e C1.e C1.e U0.e C1.e U0.e

  40. Example I The Bond Graph Formalism U0.f L1.f R1.f C1.f R1.f R2.f R1.f Bondgraphic model U0.e R1.e C1.e C1.e U0.e C1.e U0.e

  41. Example I The Bond Graph Formalism L1.f R1.f R1.f U0.f R2.f C1.f R1.f Systematic derivation of equations Bondgraphic model U0.e R1.e C1.e C1.e U0.e C1.e U0.e

  42. Example I The Bond Graph Formalism U0 .e = f(t) L1.f R1.f R1.f U0.f R2.f C1.f R1.f Systematic derivation of equations Bondgraphic model U0.e R1.e C1.e C1.e U0.e C1.e U0.e

  43. Example I The Bond Graph Formalism U0 .e = f(t) U0 .f = L1 .f + R1 .f U0.f R1.f R1.f L1.f R2.f C1.f R1.f Systematic derivation of equations Bondgraphic model U0.e R1.e C1.e C1.e U0.e C1.e U0.e

  44. Example I The Bond Graph Formalism U0 .e = f(t) U0 .f = L1 .f + R1 .f d/dtL1.f = U0 .e / L1 U0.f R1.f R1.f L1.f R2.f C1.f R1.f Systematic derivation of equations Bondgraphic model U0.e R1.e C1.e C1.e U0.e C1.e U0.e

  45. Example I The Bond Graph Formalism U0 .e = f(t) U0 .f = L1 .f + R1 .f d/dtL1.f = U0 .e / L1 R1 .e = U0 .e –C1 .e U0.f L1.f R1.f R1.f R2.f C1.f R1.f Systematic derivation of equations Bondgraphic model U0.e R1.e C1.e C1.e U0.e C1.e U0.e

  46. Example I The Bond Graph Formalism U0 .e = f(t) U0 .f = L1 .f + R1 .f d/dtL1.f = U0 .e / L1 R1 .e = U0 .e –C1 .e R1 .f = R1 .e / R1 L1.f U0.f R1.f R1.f R2.f C1.f R1.f Systematic derivation of equations Bondgraphic model U0.e R1.e C1.e C1.e U0.e C1.e U0.e

  47. Example I The Bond Graph Formalism U0 .e = f(t) U0 .f = L1 .f + R1 .f d/dtL1.f = U0 .e / L1 R1 .e = U0 .e –C1 .e R1 .f = R1 .e / R1 C1 .f = R1 .f –R2 .f L1.f U0.f R1.f R1.f R1.f R2.f C1.f Systematic derivation of equations Bondgraphic model U0.e R1.e C1.e C1.e U0.e C1.e U0.e

  48. Example I The Bond Graph Formalism U0 .e = f(t) U0 .f = L1 .f + R1 .f d/dtL1.f = U0 .e / L1 R1 .e = U0 .e –C1 .e R1 .f = R1 .e / R1 C1 .f = R1 .f –R2 .f d/dt C1.e= C1 .f / C1 R1.f U0.f L1.f R1.f R1.f R2.f C1.f Systematic derivation of equations Bondgraphic model U0.e R1.e C1.e C1.e U0.e C1.e U0.e

  49. Example I The Bond Graph Formalism U0 .e = f(t) U0 .f = L1 .f + R1 .f d/dtL1.f = U0 .e / L1 R1 .e = U0 .e –C1 .e R1 .f = R1 .e / R1 C1 .f = R1 .f –R2 .f d/dt C1.e= C1 .f / C1 R2 .f = C1 .e / R2 R1.f U0.f L1.f R1.f R2.f C1.f R1.f Systematic derivation of equations Bondgraphic model U0.e R1.e C1.e C1.e U0.e C1.e U0.e

  50. Example I The Bond Graph Formalism U0 .e = f(t) U0 .f = L1 .f + R1 .f d/dtL1.f = U0 .e / L1 R1 .e = U0 .e –C1 .e R1 .f = R1 .e / R1 C1 .f = R1 .f –R2 .f d/dt C1.e= C1 .f / C1 R2 .f = C1 .e / R2 R1.f U0.f L1.f R1.f R2.f C1.f R1.f Systematic derivation of equations Bondgraphic model U0.e R1.e C1.e C1.e U0.e C1.e U0.e

More Related