1 / 35

几个有趣的黑洞解

几个有趣的黑洞解. 蔡 荣 根 中国科学院理论物理研究所 ( 中科大交叉中心, 2010.5.20 ). 一、有温度,没有质量和熵的黑洞 (1) A Lifshitz black hole in R^2 Gravity (2) Black holes in Lovelock gravity 二、考虑了共形反常的黑洞解 (3) Black holes in gravity with conformal anomaly and logarithmic term in black hole entropy. References:

sailor
Download Presentation

几个有趣的黑洞解

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 几个有趣的黑洞解 蔡 荣 根 中国科学院理论物理研究所 (中科大交叉中心,2010.5.20)

  2. 一、有温度,没有质量和熵的黑洞 (1) A Lifshitz black hole in R^2 Gravity (2) Black holes in Lovelock gravity 二、考虑了共形反常的黑洞解 (3) Black holes in gravity with conformal anomaly and logarithmic term in black hole entropy References: (1) RGC, Y. Liu and Y.W. Sun, JHEP 0910, 080 (2009), arXiv: 0909.2807 (2) RGC, L.M. Cao and N. Ohta,PRD 81, 024018 (2010), arXiv:0911.0245 (3) RGC, L.M. Cao and N. Ohta, JHEP 1004, 082 (2010), arXiv: 0911.4379

  3. Einstein’s Equations (1915): {Geometry matter (energy-momentum)}

  4. Thermodynamics of black holes : Schwarzschild Black Hole: Mass M horizon More general: Kerr-Newmann Black Holes M, J, Q No Hair Theorem

  5. Four Laws of Black Hole mechanics: k: surface gravity, J. Bardeen,B. Carter, S. Hawking, CMP,1973

  6. Four Laws of Black Hole Thermodynamics: Key Points: T = k/2π S= A/4G J. Bekenstein, 1973; S. Hawking, 1974, 1975

  7. Black hole is a window to quantum gravity Thermodynamics of black hole: dM = T dS (S.Hawking, 1974, J. Bekenstein, 1973)

  8. Holography of Gravity Entropy in a system with surface area A: S<A/4G (‘t Hooft) (L. Susskind) The world is a hologram?

  9. AdS/CFT correspondence (J. Maldacena, 1997) IIB superstring theory on AdS5 x S5 N=4 SYM Theory “Real conceptual change in our thinking about Gravity.” (E. Witten, Science 285 (1999) 512)

  10. A Lifshitz black hole in R^2 gravity Scaling symmetry: Lifshitz theory: Gravity dual? (S. Kachru, arXiv: 0808.1725)

  11. Consider the action:

  12. The Lifshitz spacetime

  13. Non-extremal black holes:

  14. Thermodynamics: =0! =0!

  15. (2) Black holes without mass and entropy in Lovelock gravity Lovelock gravity:

  16. Gauss-Bonnet Black Holes Equations of motion: metric ansatz:

  17. The solution: [D. Boulwareand S. Deser, PRL 55, 2656 (1985) J. T. Wheeler, NPB 268, 737 (1986) R.G. Cai, PRD65, 084014 (2002) ]

  18. More general case: Lovelock black holes [J.T. Wheeler, NPB 273, 732 (1986); R. Myers and J. Simon, PRD 38, 2434 (1988); R. G. Cai, PLB 582, 237 (2003)]

  19. Thermodynamic quantities

  20. Now consider the spacetime: Equations of motion:

  21. Some examples: [H. Maeda and N. Dadhich, arXiv:hep-th/0605031; arXiv:hep-th/0611188 ]

  22. Thermodynamics:

  23. Wald formula and euclidean action: 1) when m is odd, 2) When m is even,

  24. An example: Euclidean action: M=0

  25. (3) Black holes in gravity with conformal anomaly and logarithmic term in black hole entropy (M. Duff, hep-th/9308075) In four dimensions:

  26. Two conditions: • Its trace is given by • it is covariant conserved (3) Additional assumption i) Two dimensions; ii) FRW universe

  27. The meanings of Q: Soften the singularity at r=0:

  28. Thermodynamics:

  29. Entropy formula of interest: * S. Solodukhin, PRD 57, 2410 (1998) * J.E. Lidsey, arXiv: 0911.3286 * RGC, L.M. Cao and Y.P. Hu, JHEP 0808, 090 (2008) * S~ A + ln A +1/A +1/A^2+…. However, Wald formula…..

  30. 谢谢!

More Related