650 likes | 974 Views
رئوس مطالب. تاريخچه آنتی بيوتيک ها مکانيسم عمل آنتی بيوتيک ها انواع آنتی بيوتيک ها مقاومت به آنتی بيوتيک ها. اهداف اختصاصي. پس از پايان اين جلسه انتظار مي رود كه فراگير: پنج مکانيسم عمل آنتی بيوتيک ها را تشخيص دهد
E N D
رئوس مطالب تاريخچه آنتی بيوتيک ها مکانيسم عمل آنتی بيوتيک ها انواع آنتی بيوتيک ها مقاومت به آنتی بيوتيک ها
اهداف اختصاصي • پس از پايان اين جلسه انتظار مي رود كه فراگير: • پنج مکانيسم عمل آنتی بيوتيک ها را تشخيص دهد • توضيح دهد چرا آنتی بيوتيک ها به صورت اختصاصی بر روی باکتری ها اثر می کنند • مزايای پنی سيلين ها ی نيمه صناعی، سفالوسپورين ها و ونکومايسن را بيان نمايد • نحوه ممانعت از سنتز پروتئين توسط جنتامايسين، تتراسايکلين ،کلرامفنيکل و اريترومايسين را توضيح دهد • مکانيسم اثر پلی مکسين B و باسی تراسين را با هم مقايسه نمايد • توضيح دهد چگونه ريفامپين و سيپروفلوکساسين باعث مرگ باکتری ها می شوند • نحوه اثر سولوفوناميد ها بر روی باکتری ها توضيح دهد • مکانسم ها ی ايجاد مقاومت به آنتی بيوتک های مختلف را با ذکر مثال توضيح دهد • نحوه تعيين حساسيت باکتری به آنتی بيوتيک های مختلف در آزمايشگاه جهت انتخاب آنتی بيوتيک مناسب • برای درمان بيماری را توضيح دهد
The era of chemotherapy • 1910 • Paul Ehrlich • The German chemist • Discovered Salvarsan • Effective against Treponema pallidum
In 1928, Alexander Fleming's discovery of penicillin • In 1935, Gerhard Domagk's discovery of Sulfonamidochrysoidine • In 1943, Selman Waksman's discovery of streptomycin The era of chemotherapy
The Spectrum of Antimicrobial Activity • Narrow spectrum (limited spectrum) • Antimicrobials effective against a (limited spectrum) of microbial types • A drug effective on G+ or G- bacteria • Broad spectrum (extended spectrum) • Antimicrobials effective against a (extended spectrum) wide variety of microbial types • A drug effective against both G+& G- bacteria
The Action of Antimicrobial Drugs Bactericidal Kill microbes directly Bacteriostatic Prevent microbes from growing
Mechanisms of Antibiotics Action 1- Inhibition of Cell Wall Synthesis 2- Injuring the Plasma Membrane 3- Inhibition of Protein Synthesis 4- Inhibition of Nucleic Acid Synthesis 5- Inhibiting the Synthesis of Essential Metabolites
Penicillin-binding proteins (PBPs( Transpeptidases, Carboxypeptidases, Transglycosylases Inhibition of Cell Wall Synthesis β-Lactam antibiotics: generally are bactericidal agents
Inhibition of Cell Wall Synthesis • 1- Beta-Lactam Antibiotics • Penicillins • Cephalosporins • 2- Glycopeptides • Vancomycin • 3- Lipopeptides • Daptomycin • 4- Polypeptides • Bacitracin
R Thiazolidine β-lactam Beta-Lactam Antibiotics • Penicillins • 6-aminopenicillanic acid • Penicillium chrysogenum
Penicillin G Penicillin V NaturalPenicillins Penicillin G • Is incompletely absorbed • Inactivated by gastric acid • An intravenous drug Penicillin V • Resistant to acid • Oral form Active against All β-hemolytic & most other streptococci • Meningococci & most G+ anaerobes
Nafcillin Methicillin Cloxacillin Oxacillin Dicloxacillin Penicillinase resistant penicillins Nafcillin, Oxacillin, Methicillin, Cloxacillin, Dicloxacillin Similar to natural penicillins Enhanced activity against staphylococci
Ticarcillin Ampicillin Amoxicillin Carbenicillin Broad-spectrum penicillins • 1- Aminopenicillins:Ampicillin, Amoxicillin • Ampicillin was limited primarily to Escherichia & Proteus species • 2- Carboxypenicillins: Carbenicillin, Ticarcillin • Are effective against a broader range of G- bacteria • Klebsiella, Enterobacter, & Pseudomonas species
Piperacillin Mezlocillin Azlocillin Broad-spectrum penicillins 3- Ureidopenicillins: Azlocillin, Piperacillin, Mezlocillin
Clavulanic acid Tazobactam Sulbactam Analogues • Clavulanic acid, Sulbactam, Tazobactam • β- lactamase inhibitors • Irreversibly inactivate susceptible bacterial β- lactamases • Are relatively inactive by themselves • When combined with some penicillins are effective (ampicillin, amoxicillin, ticarcillin, piperacillin) Amoxicillin/clavulanic acid (Co-amoxiclav) Ampicillin/sulbactam (Sultamicillin)
R3 R1 β-lactam ring Dihydrothiazine ring R2 Cephalosporins • 7-aminocephalosporanic acid • Originally isolated from the mold Cephalosporium • Cephamycins • Contain O in place of S • More stable to β-lactamase hydrolysis
Cefazolin Cephradine Cephalexin First-generation (narrow-spectrum) Cefazolin, Cephalexin, Cephalothin, Cephapirin, Cephradine Escherichia coli Klebsiella species Proteus mirabilis Oxacillin-susceptible gram-positive cocci
Cefaclor Cefamandole Cefoxitin Second-generation(expanded-spectrum) Cefamandole, Cefaclor, Cefuroxime, Cefotetan, Cefoxitin Haemophilus influenzae Enterobacter species Citrobacter species Serratia species Some anaerobes, such as Bacteroides fragilis
Ceftriaxone Cefixime Ceftazidime Third-generation(broad-spectrum) Cefixime, Cefoperazone, Cefotaxime, Ceftazidime,Ceftizoxime, Ceftriaxone Most Enterobacteriaceae Pseudomonas aeruginosa
Cefpirome Fourth-generation Cefepime, Cefpirome Activity = oxacillin against gram-positive bacteria Improved gram negative activity
Ceftobiprole Ceftaroline acetate Fifth-generation Ceftobiprole, Ceftaroline
Ertapenem Meropenem Imipenem Carbapenems • Imipenem, Meropenem, Ertapenem • Broad-spectrum antibiotics • Active against virtually all organisms • Resistance has been reported • All oxacillin-resistant staphylococci • Selected Enterobacteriaceae • Pseudomonas
Aztreonam Monobactams • Aztreonam • Narrow-spectrum antibiotics • Are active only against aerobic, G- bacteria • Anaerobic bacteria and G+ bacteria are resistant
Resistant to β-lactam antibiotics • 1) Prevention of the interaction of the antibiotic & the target PBP Only in G- particularly Pseudomonas species Changes in the porins Alter the size or charge of channels • 2) Modification of the binding of the antibiotic to the PBP • I- A mutation in the PBP gene • Penicillin resistance in Enterococcus faecium • II- Modification of an existing PBP through recombination • Penicillin resistance in Streptococcus pneumoniae III- Acquisition of a new PBP • Escherichia coli , MRSA • IV- An overproduction of PBP • 3) Hydrolysis of the antibiotic by β-lactamases
β-lactamases • Serine proteases as the PBPs • > 200 different β-lactamases Penicillinases: specific for penicillins • Cephalosporinases: specific for cephalosporins • Carbapenemases: specific for carbapenems • Four classes (A to D)
β-lactamases • Class A • The most common are SHV-l & TEM-l • Found in G- rods (e.g., Escherichia, Klebsiella) • Minimal activity against cephalosporins • Point mutations: Extended-spectrum β-lactamases [ESBLs] Are commonly encoded on plasmids
β-lactamases • Class B • Zinc dependent metalloenzymes • Broad spectrum of activity against all β-lactam antibiotics • Class C • Are primarily cephalosporinases • Are encoded on the bacterial chromosome • Class D • Are penicillinases • Found primarily in G- rods
Vancomycin Glycopeptides: Vancomycin • Obtained from Streptomyces orientalis • Interacts with the D-alanine-D-alanine in the pentapeptide • Is inactive against G- bacteria • Intrinsically resistant • D-alanine-D-lactate • Lactobacillus, Erysipelothrix • D-alanine-D-serine • Enterococcus gallinarum, E. casseliflavus • Acquired resistance:vanA& vanB
Bacitracin Polypeptides: Bacitracin • Bacillus licheniformis • Interfering with dephosphorylation of the lipid carrier • Damage cytoplasmic membrane and inhibit RNA transcription • The treatment of skin infections caused by • Staphylococcus & group A Streptococcus • Used in creams, ointments, sprays • G- bacteria are resistant • Resistance: failure of the antibiotic to penetrate into the cell
Inhibition of Cell Wall Synthesis Isoniazid, Ethionamide, Ethambutol, & Cycloserine Used for the treatment of mycobacterial infections Isoniazid Isonicotinic acid hydrazide [INH]) Bactericidal; Blocks mycolic acid synthesis Ethionamide Derivative of INH Blocks mycolic acid synthesis Ethambutol Interferes with the synthesis of arabinogalactan in the cell wall Cycloserine Inhibits D-alanine-Dalanine synthetase & Alanine racemase
Injuring the Plasma Membrane 1- Lipopeptides Daptomycin 2- Polypeptides Polymyxins
Daptomycin Lipopeptides: Daptomycin • A naturally cyclic lipopeptide • Streptomyces roseosporus • Binds irreversibly to the CM. • Disruption of the ionic gradients • Active against G+ bacteria • G- bacteria are resistant
Colistin Polymyxin B Polypeptides: Polymyxins • Cyclic polypeptides • Bacillus polymyxa • Interacting with LPS & the phospholipids in the OM • Increased cell permeability • Polymyxin B & E (Colistin) causing seriousnephrotoxicity • Localized infections: external otitis, eye&skin infections
Streptomycin Aminoglycosides • Amino sugars --- Glycosidic Bond--- Aminocyclitol ring • Bactericidal • Bind irreversibly to ribosomal proteins Misreading of the messenger RNA (mRNA) • Premature release of the ribosome from mRNA • Streptomycin, Neomycin, Kanamycin, & Tobramycin Streptomyces species • Gentamicin & Sisomicin Micromonospora species • Amikacinfrom kanamycin • Netilmicin from sisomicin • Systemic infections caused by many G- rods
Aminoglycosides • Resistance • 1- Mutation of the ribosomal binding site • 2- Decreased uptake of the antibiotic (Anaerobic bacteria) • 3- Increased expulsion of the antibiotic from the cell • 4- Enzymatic modification • The most common mechanism of resistance • Phosphotransferases (APHs; 7 described) • Adenyltransferases (ANTs; 4 described) • Acetyltransferases (AACs; 4 described)
The staining of teeth associated with tetracycline use Tetracyclines • Broad-spectrum • Bacteriostatic • Tetracycline, Doxycycline, Minocycline • Binding reversibly to the 30S • Blocking the binding of aminoacyl-tRNA • Chlamydia, Mycoplasma, Rickettsia
Tetracyclines Resistance 1- Decreased penetration of the antibiotic 2- Active efflux of the antibiotic out of the cell 3- Alteration of the ribosomal target site 4- Enzymatic modification of the antibiotic
Glycylcycline • Tigecycline • Semisynthetic derivative of minocycline • Inhibits protein synthesis as the tetracyclines • Broad spectrum of activity: G+, G- & anaerobic bacteria • Resistant Bacteria Proteus • Morganella • Providencia • Pseudomonas aeruginosa
Oxazolidinones • Linezolid • Narrow-spectrum • Block initiation of protein synthesis (70S initiation complex) • Binds to the 50S ribosomal subunit • Mechanism of resistance Target site modification
C: Chloramphenicol M: Macrolides T: Tertracyclines
Chloramphenicol • Broad spectrum • Bacteriostatic • Blocking peptide elongation • Binding reversibly to the peptidyl transferase (50S) • Only for the treatment of typhoid fever • Can produce aplastic anemia(1 per 24,000 treated patients) • Resistance: plasmid-encoded chloramphenicol acetyltransferase
Desosamine Cladinose Macrolides Erythromycin, Azithromycin, Clarithromycin • Streptomyces erythreus • Broad spectrum • Bacteriostatic • Blocks polypeptide elongation Reversible binding to the 23S rRNA • Used to treat pulmonary infections Mycoplasma, Legionella, & Chlamydia species • Infections caused by Campylobacter species
Macrolides Resistance 1- Alteration of the ribosomal target site Methylation of the 23S rRNA 2- Enzymatic modification of the antibiotic Destruction of the lactone ring by an erythromycin esterase 3- Mutations in the 23S rRNA & ribosomal proteins
Ketolides • Telithromycin • Semisynthetic derivatives of erythromycin • Increase stability in acid • Blocks protein synthesis as Macrolides • Broad-spectrum antibiotic • Active against some macrolide resistant staphylococci & enterococci
E E E CD CD CD مقاومت پيوسته حساس مقاومت القايي Lincosamide • Clindamycin • Derivative of lincomycin (Streptomyces lincolnensi) • Inhibits peptidyl transferase • Block the binding of the amino acid-acyltRNA complex • Resistance: Methylation of the 23S ribosomal RNA
Streptogramin • Streptogramin • Cyclic peptides • Streptomyces species • Group A and group B • Quinupristin-dalfopristin (Synercid) • Dalfopristin prevents peptide chain elongation • Quinupristin initiates premature release of peptide