150 likes | 268 Views
University of Agriculture in Krakow Department of Water Engineering and Geotechnics. Tomasz Koniarz. “Development of the complex condition framework for nursing talented students at the Univesity of West Hungary” project ID: TÁMOP - 4.2.2.B-10/1-2010-0018.
E N D
University of Agriculture in KrakowDepartment of Water Engineering and Geotechnics Tomasz Koniarz “Development of the complex condition framework for nursing talented students at the Univesity of West Hungary” project ID: TÁMOP - 4.2.2.B-10/1-2010-0018
Content of heavy metals and phytotoxkit of bottom sediments collected from the Chancza reservoir • Introduction • Location • Characteristic of thereservoir • Collecting bottom sediment samples • Methodology • Results • Conclusions • References
Introduction Waterreservoirs stop and accumulateof contamination The research aimed at assessing the degree of bottom sediment contamination with heavy metals in the Chancza reservoir using geochemical and biological indices
Characteristic of waterreservoir • Reservoirlength5.4 km • Reservoirwidth 300 ÷ 900 m • Maximumdepth 11 m • Basinarea 475 km2 • Reservoirarea4.10 km2 • Reservoircapacity19.31 mln m3
Methodology Chemical analyses The content of elements (Zn. Cu. Ni. Cr. Pb and Cd) in the sediments were determined with an ICP-OES spectrometer (Pekin Elmer Optima 7300 DV)after hot mineralization in a mixture of HNO3 and HClO3 (3:2) acids. Geochemical indices • Müller’sgeoaccumulation index (Igeo), • contaminationfactor (Cf), • contaminationdegree (Cdeg). Biologicalproperties • Phytotoxkittest
Results - geochemicalindices (content of heavy metals and geochemicalbackground)
Results - geochemical indices Müller’s geoaccumulation index (Igeo) *u.c.c. - uppercontinentalcrust **b. s. - battomsediments
Results - geochemical indices contamination factor (Cf) contamination degree (Cdeg) *u.c.c. - uppercontinentalcrust **b. s. - battomsediments
Results - toxicity of the bottom sediments Where: (d) – distilled water (w) – interstitial water
Conclusion • Interpretation of results depends mostly on assumed geochemical background. • The calculated indices which take the background of earth crust into account deviate the most from the indices which take the background for soil and bottom sediments into account. • The calculated indices (Igeo. Cif and Cdeg) were varied depending on which metal was being analyzed. sediment collection zone. as well as on assumed geochemical background. • The conducted Phytotoxkit test showed a stimulating influence of bottom sediments on the growth of young roots of the test plants. which may prove their increased fertility. • A higher growth stimulation of roots was observed in the naturally wet sediment (samples 8). which may be a proof for presence of nutritioncompounds in water (phosphorus and nitrogen).
Reference HAKANSON. L. (1980): An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research. 14: 975-1001. KABATA-PENDIAS. A. – PENDIAS. H. (1999): Biogeochemiapierwiastkow sladowych. PWN. Warszawa. LAJCZAK. A. (1995). Studium nad zamulaniem wybranych zbiornikow zaporowych w dorzeczu Wisly. Mon. Komitetu Gospodarki Wodnej PAN. 8. 108 p. LIS. J. – PASIECZNA. A. (1995b): Atlas geochemiczny Polski. Skala 1:250 000. PIG. Warszawa. MADEYSKI. M. – TARNAWSKI. M. (2006):Infrastruktura i Ekologia Terenow Wiejskich. Ocena stanu ekologicznego osadow dennych wybranych małych zbiornikow wodnych.. PAN. Krakow. 4/3/2006: 107-116. MCLENNAN. S.M. (1992). Continental Crust. In Encyclopedia of Earth Sciences. Vol. (1) (W.A. Nierenberg. Ed.). Kluwer. Dortrecht. The Netherlands. 581-592. MULLER G. (1969): Index of geoaccumulation in sediments of the Rine River. Geojournal. 2: 108-118. STEPHENS S.R. – ALLOWAY B.J. – PARKER A. – CARTER J.E. – HUDSON M.E. (2001) Changes in the leachability of metals from dredged canal sediments during drying and oxidation. Environ Pollut. 114. 407-413.
Thank you for your attention