1 / 62

KERESÉS (SEARCH)

KERESÉS (SEARCH). KERESÉS. Keresés – módszeres próbálkozás Problémák: Mit kell tudni egy feladat megoldásához? – akciók, állapotok, célok Hogyan kell az ismereteket leírni? – MI-ben: reprezentáció Hogyan kell a megoldást keresni? – MI-ben: keresés Reprezentáció:

salma
Download Presentation

KERESÉS (SEARCH)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. KERESÉS (SEARCH)

  2. KERESÉS • Keresés – módszeres próbálkozás • Problémák: • Mit kell tudni egy feladat megoldásához? – akciók, állapotok, célok • Hogyan kell az ismereteket leírni? – MI-ben: reprezentáció • Hogyan kell a megoldást keresni? – MI-ben: keresés • Reprezentáció: • állapottér (state space), kezdeti- és célállapotok • reprezentálása: gráf (graph) • csomópont (node) - állapot (state) • él (arc) - művelet (action) • probléma redukció – részfeladatokra bontás • reprezentálása: gráf • csomópont – problémaleírás • él - művelet (probléma részproblémává redukálása)

  3. KERESÉS • Reprezentációs gráf • keresés közben építjük fel (implicit leírás) • irányított ciklusmentes gráf (egyszerűsítés: fává alakítjuk)

  4. KERESÉS • Keresési probléma: • kezdeti állapot, • operátorok, • célteszt/ célállapot, • költségek • A keresés folyamata: • állapottér, út, megoldás • kiterjesztés, stratégia • A keresés technikája: • keresési fa, csomópont, gyökér, levél • keresési algoritmus: melyik csomópontot érdemes kiterjeszteni? • Keresés hatékonyságának mérése: • talál-e megoldást? • talált megoldás jó megoldás-e? (alacsony költségű – útköltség) • keresési eljárás költsége (idő- és memóriaigény) • keresés költsége: út költsége + keresési eljárás költsége

  5. MISSZIONÁRIUSOK ÉS KANNIBÁLOK PROBLÉMÁJA kezdeti állapot … célállapot … útköltség ... Modell: híd, lyukas csónak, evező …  frame probléma • Reprezentáció: • node ?? - nevek ?? • – bal part:(3M, 3K, Cs) • akció ?? - ki merre megy a csónakban • – (1M), (1K), (1M 1K), (2M), (2K) • Keresés: megszorítások az operátorok alkalmazására: • – csak legális állapotba • – csak új állapotba

  6. HANOI TORNYAI reprezentáció … állapottér modell állapot - melyik korong melyik rúdon, pl. (1, 1, 1, 1) művelet - korong áthelyezése i. rúdról j. rúdra (1  i, j  3)

  7. HANOI TORNYAI Hipotetikus megoldás Probléma redukció

  8. 4 x 4-es PUZZLE reprezentáció állapotok – lapok helyzete – 4 x 4 -es mátrix állapottér – elérhetőség ! akció - ? adott lap mozgatása fel, le, jobbra, balra lyuk mozgatása (4 lehetséges akció) költség – az akciók száma (az út hossza) megoldás – minimális költségű út a kezdeti és a célállapot között céltól való távolság hány lépés van a célig (S) – nem tudjuk  becslés rossz helyen levő lapok száma (H1) Manhattan távolság (H2) H1, H2: alsó becslések H2  H1 H2 jobban informált becslés

  9. N KIRÁLYNŐ PROBLÉMA reprezentáció állapot – egy állás (N x N-es mátrix) állapottér – lehetséges állások 1..N királynővel – mezők megcímkézése (KN, ütésben, szabad)  nem lehetnek ütésben álló KN-k  KN=N esetén célállapot művelet – 1 KN elhelyezése  ütésben álló mezők száma nő korlátozás kielégítés (constraint satisfaction) költség – minden megoldás költsége azonos (N hosszú műveletsorozat) kezdőállapot – üres tábla célállapot – N királynő a táblán

  10. N KIRÁLYNŐ PROBLÉMA reprezentációs gráf – inkrementális megfogalmazás

  11. LEFEDÉSI PROBLÉMA "bamba módszer" : próbálgatáslehetséges állapotok száma igen nagy  elágazási tényező nagy MI-t csak akkor szabad használni, ha a természetes kifogy!

  12. CSELEKVÉSTERVEZÉS lehet-e ezt keresési feladatként felfogni?akciósorozat (akciósorrend??) kezdőállapot  célállapot (forward reasoning) - itt reménytelen célhoz hiányzó feltételek célállapot  kezdőállapot (backward reasoning)

  13. CSELEKVÉSTERVEZÉS

  14. ÁLTALÁNOS KERESÉSI ALGORITMUS • adott: • kezdeti állapot • célteszt/ célállapot • műveletek • keresési algoritmus: • Legyen L a kezdeti állapoto(ka)t tartalmazó lista. • Ha L üres, akkor leállás - a keresés sikertelen; egyébként legyen n egy csomópont L-ből. • Ha n célállapot, akkor leállás - eredmény megadása; egyébként n törlése L-ből, n gyermekeinek előállítása, n gyermekeinek hozzáadása L-hez, visszalépés 2-re.

  15. ÁLTALÁNOS KERESÉSI ALGORITMUS • keresőgráf (search graph) • nyílt csúcsok (open nodes) • kiterjesztés (extension) • sikertelen keresés • több célállapot • melyik nyílt csúcsot válasszuk ???

  16. PÉLDA: ÁLTALÁNOS KERESŐ JÁTÉK • adott: két kétjegyű szám (kiindulási- és célszám) • feladat: eljutni a kiindulási számtól a célszámig • akció: egy számjegy növelése vagy csökkentése, kétszer nem lehet ugyanazt a számjegyet változtatni, 0-t csökkenteni, 9-t növelni nem lehet Pl. kiindulási szám 25, célszám 44 • L={25} • n=25 • L={15 (25), 35 (25), 24 (25), 26 (25)} • n=15 • L={35 (25), 24 (25), 26 (25), 14 (15|25), 16 (15|25)} … melyik számot választjuk a listáról? hova, milyen sorrendben tesszük a gyerekeket? célfüggvény

  17. VAK KERESÉSEK (BLIND SEARCH)

  18. SZÉLESSÉGI KERESÉS (BREADTH-FIRST SEARCH) A keresési fában mindig a legmagasabb szinten lévő csomópontok valamelyikét terjeszti ki open lista (L): A B C C D E D E F G E F G H I J F G H I J G H I J H I J K L I J K L M J K L M N O K L M N O A C B D E F G H I J K L M N O

  19. SZÉLESSÉGI KERESÉS (BREADTH-FIRST SEARCH) Az általános keresési algoritmus módosítása: • n az első csomópont L-ből • n gyermekeinek hozzáadása L végéhez Az algoritmus tulajdonságai: • memóriaigény: bd • időigény: 1 + b + b2 + ... + bd bd • teljes • optimális

  20. MÉLYSÉGI KERESÉS (DEPTH-FIRST SEARCH) A keresési fában mindig a legmélyebben lévő csomópontok valamelyikét terjeszti ki A open lista (L): A B C D E C H I J E C M I J E C I J E C N O J E C C B D E F G H I K L J M N O

  21. MÉLYSÉGI KERESÉS (DEPTH-FIRST SEARCH) Az általános keresési algoritmus módosítása: • n az első csomópont L-ből • n gyermekeinek hozzáadása L elejéhez Az algoritmus tulajdonságai: • memóriaigény - megoldás méretével arányos - b*d • időigény: bd • nem teljes (végtelen ág lehet) • nem optimális

  22. KORLÁTOZOTT MÉLYSÉGŰ KERESÉS(DEPTH-LIMITED SEARCH) • Mélységi keresés mélységi korláttal. • A keresési fában mindig a legmélyebben lévő csomópontok valamelyikét terjeszti ki, feltéve, hogy az nincs egy előre adott mélységi korlát (l) alatt. Az algoritmus tulajdonságai: • memóriaigény: b*l • időigény: bl • teljes (ha l nagyobb, mint a megoldás mélysége, d) • nem optimális Hogyan válasszuk meg előre a mélységi korlátot?

  23. ITERATÍV MÉLYÍTÉS (ITERATIVE DEEPENING) • Megkerüli a mélységi korlát meghatározását. • Korlátozott mélységű keresés egyre növekvő l = 0, 1, 2, ... mélységi korlát mellett. • Mintha a csomópontoknak a mélységi korlát alatt nem lehetnének leszármazottai. Ha a célt nem sikerült így elérni, eggyel növeli a korlátot és újraindítja az egész keresést. Az algoritmus tulajdonságai: • memóriaigény: megoldás méretével arányos – b*d • időigény: bár redundáns (a fa „teteje” ismétlődik) – bd • teljes • optimális

  24. ITERATÍV MÉLYÍTÉS (ITERATIVE DEEPENING) open lista (L): l=3 A B C D E C H I J E C I J E C J E C E C C F G G K L open lista (L): l=0 A l=1 A B C C l=2 A B C D E C E C C F G G A C B E F G D H I K L J M N O

  25. ITERATÍV MÉLYÍTÉS (ITERATIVE DEEPENING) redundáns - Nagy teher ez? Lásd az alábbi példát: • Legyen b = 10, d = 5. Ekkor a csomópontok száma: 1 + 10 + 100 + 1 000 + 10 000 + 100 000 = 111 111 • A legalsó szinten a csomópontokat egyszer kell kiterjeszteni, eggyel magasabb szinten kétszer, stb. Azaz a kiterjesztések teljes száma: 6*1 + 5*10 + 4*100 + 3*1 000 + 2*10 000 + 100 000 = 123 456 • Ebben a példában ez a szükségesnél 11% -kal több kiterjesztést jelent. Előnyei: • mélységi keresés csekély memóriaigénye • szélességi keresés teljessége • biztosítja, hogy a keresési fa nem lesz mélyebben feltárva, mint amilyen mélyen maga a cél található

  26. EGYENLETES KERESÉS (UNIFORM-COST SEARCH) A keresési fában mindig a pillanatnyilag legkisebb költségű csomópontok valamelyikét terjeszti ki open lista (L): A(0) B(3) C(4) C(4) D(5) E(7) D(5) E(7) F(7) G(7) I(6) E(7) F(7) G(7) J(7) H(8) E(7) F(7) G(7) J(7) H(8) N(8) O(8) F(7) G(7) J(7) H(8) N(8) O(8) G(7) J(7) H(8) N(8) O(8) J(7) H(8) N(8) O(8) K(9) L(10) H(8) N(8) O(8) K(9) L(10) N(8) O(8) K(9) L(10) M(11) A 3 4 C B 3 3 2 4 D E F G 3 2 2 3 1 H I J K L 2 2 M N O

  27. EGYENLETES KERESÉS (UNIFORM-COST SEARCH) Az általános keresési algoritmus módosítása: • n az első csomópont L-ből • n gyermekeinek hozzáadása L-hez, majd L rendezése a csomópontok növekvő költsége szerint. Az algoritmus tulajdonságai: • memóriaigény: bd • időigény: bd • teljes • optimális speciális változata: szélességi keresés (élek egységnyi költségűek)

  28. VAK KERESÉSI STRATÉGIÁK ÖSSZEHASONLÍTÁSA b: elágazási tényező d: megoldás mélysége l: mélységi korlát

  29. HEURISZTIKUS KERESÉSEK (HEURISTIC SEARCH)

  30. HEURISZTIKUS KERESÉSEK • vak keresési algoritmusok hatékonyságának javítása • feladatmegoldások számításigényének csökkentése • keresés korlátozott erőforrások mellett • feladathoz kapcsolódó információk figyelembe vétele Heurisztika • általános jelentés: bármely tanács, mely gyakran hatékony, ám nem biztos hogy minden esetben érvényes • technikai jelentés: heurisztikus kiértékelő függvény, amely a probléma egy állapotához egy számot rendel (pl. sakk: egy pozíció ereje)

  31. HEURISZTIKUS KERESÉSEK Heurisztika a keresésben: • A még ki nem terjesztett csomópontok (L) kiértékelése: mennyire van közel a célhoz? Algoritmus típusok • legjobbat-először keresés: a legjobbnak tűnő csomó- pont kiterjesztése (előretekintő keresés, A*, IDA*) • iteratív javítás: elmozdulás a legjobbnak tűnő irányba (hegymászó keresés, szimulált hűtés, genetikus algoritmus) A legjobb csomópont megtalálása elvben nem könnyebb, mint maga a keresési feladat!

  32. HEURISZTIKUS KERESÉSEK Heurisztikus kiértékelő függvény Célja: • a feladat megoldásával járó számításigény csökkentése • adott erőforrás használat mellett a lehető legjobb megoldás megtalálása Kompromisszum a számításigény és a megoldás minősége között Már kevés alkalmazás-függő szakismeret is nagyban segíthet akár 1), akár 2) célok érdekében. Gyakori heurisztikus kiértékelő függvény: • Annak a költségnek a becslése, mely egy célállapotnak a pillanatnyi állapotból való elérésével jár. (pl. 4x4-es játék, útkeresés városok között, 8-királynő)

  33. HEGYMÁSZÓ KERESÉS (HILL-CLIMBING SEARCH) A keresés során egy csomópont • közvetlen leszármazottjait vizsgálja csak, és • ezek közül mindig a legjobbat választja Algoritmus • Legyen n a kezdeti állapot. • Ha n egy célállapot, akkor állj le és add vissza eredményként. • Egyébként állítsd elő n valamennyi n’ leszármazottját; legyen n = a legjobb n’; menj vissza 2-re. Tulajdonságok • Nem tárolja a keresési gráfot, csak a pillanatnyilag vizsgált csomópontot - így minimális memória igény • Sikere nagyban függ a felület alakjától

  34. HEGYMÁSZÓ KERESÉS (HILL-CLIMBING SEARCH) • Problémák • lokális maximum • azonos értékű felület • nyereg probléma (gerinctúra lenne jó, de arra nem vezet út) • Módosítások: • több pontból újraindítás (véletlen újraindítású hegymászó keresés) • „lefelé vezető” lépések megengedése (szimulált hűtés) • Előnyei: • memóriaigény kicsi • jó helyzetből indulva gyorsan célhoz ér

  35. ELŐRETEKINTŐ KERESÉS (BEST-FIRST SEARCH) • Elv: megtalálni egy célt, amilyen gyorsan csak lehetséges • Kiértékelés alapja: egyedül a céltól való távolság • Mindig a célhoz legközelebb levő csomópontot terjeszti ki – becslés Algoritmus • Legyen L a kezdeti állapotokat tartalmazó lista. • Ha L üres, akkor állj le – a keresés sikertelen; egyébként legyen n az a csomópont L-ből, amelyik várhatóan a legközelebb van a célhoz. • Ha n egy célállapot, akkor állj le és add vissza (a hozzá vezető úttal együtt) eredményként; egyébként töröld n-t L-ből; állítsd elő n gyermekeit; jegyezd fel a hozzájuk vezető utat; add a gyermekeket L-hez; menj vissza 2-re.

  36. ELŐRETEKINTŐ KERESÉS (BEST-FIRST SEARCH) • Csomópont költsége: f(n) = h(n) – becsült távolság a céltól kiterjesztés sorrendje 8 1. élek költsége a példában egységnyi 6 2. 7 4 3. 4 nem optimális 2 4. 0 0 5.

  37. A ALGORITMUS egyenletes keresés és előretekintő keresés előnyös tulajdonságait egyesíti • keresés biztonságának megtartása • kiterjesztések számának csökkentése - előretekintő heurisztikával Kiértékelés alapja: • a már megtett út, és • a még várható út költsége kiértékelő függvény: f(n) = g(n) + h(n) h(n)  0 ahol: • g(n): n tényleges távolsága a kezdeti állapottól • h(n): n becsült távolsága a céltól f(n) minimális  kifejtésre kerülő csúcs

  38. A ALGORITMUS h(n) f(n) élek költsége a példában egységnyi 3 3 2 3 4 5 1 3 2 4 nem feltétlenül optimális 1 4 0 3 1 5 1 6

  39. A* ALGORITMUS olyan A algoritmus, melynek heurisztikus függvénye minden csúcsban alsó becslés n: h(n)  h*(n) h(n) megengedhető (admissible) Az A* algoritmus mindig optimális megoldást talál (ha létezik megoldás). • A kiterjesztésre választott bármely n csúcsra f(n)  f*. (f* - optimális mo. költsége) ha az algoritmus n csúcsot választja m helyett: f(n)  f(m) = g(m) + h(m)  g(m) + h*(m) = f*(m) = f* • A talált megoldás optimális (indirekt bizonyítás) Tfh eljutunk t végpontba, amely nem optimális  f(t)  f* 1. szerint f(t)  f*  ellentmondás

  40. A* ALGORITMUS A 3 (3) • L = {A(3)} • L = {B(3) D(3) C(4)} • L = {E(3) D(3) C(4)} • L = {D(3) C(4) K(6) J()} • L = {I(3) C(4) K(6) H(7) J()} • L = {C(4) N(5) K(6) H(7) J() O()} • L = {F(4) N(5) K(6) H(7) J() O() G()} • L = {N(5) K(6) L(6) H(7) J() O() G()} 1 1 2 B 2 (3) C 2 (4) D 2 (3) 1 1 4 1 1 E 1 (3) F 1 (4) G  H 2 (7) I 1 (3) 1 1 3 1 4 3 J  O  K 0 (6) L 0 (6) M 1 (7) N 0 (5) 1 3 P 0 (7) Q 0 (9)

  41. A* ALGORITMUS • h  h*  csak az útba eső node-okat fejti ki • h  0  egyenletes keresés • h  0 és élek költsége egységnyi  szélességi keresés • h1, h2 megengedhető becslések h2  h1 (minden pontban)  exp(h1)  exp(h2) h1 jobban informált becslés • ideális kiértékelő függvény: • célállapotban visszaadja a megoldás költségét h(n) = 0 és f(n) = g(n) a célban • nem változik, ha bármely állapotból optimális lépést teszünk (tökéletes becslő) ha h(n) tökéletesen becsli a céltól való távolságot, nincs letérés az optimális útról • becslés költsége . . .

  42. IDA* ALGORITMUS (ITERATIVE DEEPENING A*) • Alapötlet: az iteratív mélyítés csökkentette a vak keresés memóriaigényét – alkalmazzuk most heurisztikus keresésre • Iteratív mélyítés, mélységi korlát helyett "jósági" korlát f(n)-re • ciklusonként mélységben-először keresés • mozgó korlát • Mintha a csomópontoknak a "jósági" korlát alatt nem lehetnének leszármazottjai. – Ha a célt nem sikerült így elérni, növeli a korlátot és újraindítja az egész keresést. • Jósági korlát meghatározása: • Hatékonyabb, ha az aktuális korlátot nem léptetve növeli, hanem az előző iterációs ciklusban választja ki.

  43. IDA* ALGORITMUS (ITERATIVE DEEPENING A*) Tulajdonságok • teljes és optimális (úgy, mint A*) • memóriaigény – lineárisan nő a cél mélységével • időigény – bár redundáns, marad exponenciális (erősen függ h-tól) • NIDA* NA* N: kiterjesztett node-ok száma

  44. SZIMULÁLT HŰTÉS (SIMULATED ANNEALING) Alapötlet: fémöntési technikával való analógia Algoritmus • nem a legjobb lépést választja, hanem véletlenül választ • ha a lépés javít a pillanatnyi helyzeten, elfogadja és megteszi • bizonyos valószínűséggel elfogad olyan lépést is, amely ront a pillanatnyi helyzeten • hőmérséklet: befolyásolja a rontó lépések elfogadásának valószínűségét • kisebb hőmérsékleten kisebb az esély • a keresés előrehaladtával a hőmérséklet csökken (végül hegymászó keresés) z: jelenlegi - következő érték

  45. GENETIKUS ALGORITMUS (GENETIC ALGORITHM) Alapötlet: Keresés a természetes kiválasztódás (durva) utánzásával. Fogalmak • egyed (egy lehetséges megoldás – állapot) • populáció (a lehetséges megoldások egy halmaza) • rátermettség – fitness (célfüggvény) • genetikus kód (az egyed reprezentációja) • genetikus műveletek: kereszteződés, mutáció

  46. GENETIKUS ALGORITMUS (GENETIC ALGORITHM) Algoritmus • Töltsd fel a kezdeti populációt. • Ha a leállási feltétel teljesül, akkor állj le és add vissza a legjobb egyedeket eredményként. • Egyébként válassz ki néhány egyedet a populációból; alkalmazd rájuk a genetikus műveleteket; értékeld ki az új egyedeket; dobd el a legrosszabb egyedeket; menj vissza 2-re.

  47. ÖSSZEGZÉS – KERESÉSEK • Feladatmegfogalmazás: akciók, állapotok, célok • Vak vagy informált keresés az információ segíthet, de néha nehéz megszerezni • Tulajdonságok: teljesség, optimalitás, idő- és memóriaigény • Mikor mit érdemes használni? szélességi keresés: csak ha kicsi az elágazási tényező (ritka eset) mélységi keresés: csak ha a reménytelen ágak nem lehetnek túl hosszúak legjobb általános vak keresés: iteratív mélyítés előretekintő keresés, A* keresés: fontos a cél távolságának becslése iteratív javító algoritmusok: jó távolságbecslés nem szabad lokális optimumokban leragadni

  48. ÖSSZEGZÉS – KERESÉSEK • Meta-szintű döntések: reprezentáció és módszer választás • Nyitott kérdések minden operátor (akció) egyformán fontos nem lehet darabokból összerakni egy utat többet kell tudni (és reprezentálni) az akciókról; előfeltételeikről, hatásaikról, és kölcsönhatásaikról

  49. KÉTSZEMÉLYES JÁTÉKOK (ADVERSARY SEARCH)

  50. JÁTÉKFÁK KERESÉSE Feltételezések: • két játékos felváltva lép megadott szabályok szerint • a játékosok teljes információjúak • nincs szerepe a véletlennek, a szerencsének • minden állásban véges számú lépés közül lehet választani • a játék véges számú lépésben befejeződik • játszma végén egyik játékos nyer, másik veszít (lehet döntetlen is) sakk, malom, snóbli, bridzs, amőba, Othello, triel ??? cél: nyerés lehetőségének és módjának meghatározása (egyik játékos szempontjából)

More Related