170 likes | 482 Views
Statements Containing Multiple Quantifiers. Lecture 11 Section 2.3 Mon, Feb 5, 2007. Multiply Quantified Statements. Multiple universal statements x S , y T , P ( x, y ) y T , x S , P ( x, y ) The order does not matter. Multiple existential statements
E N D
Statements Containing Multiple Quantifiers Lecture 11 Section 2.3 Mon, Feb 5, 2007
Multiply Quantified Statements • Multiple universal statements • x S, y T, P(x, y) • y T, x S, P(x, y) • The order does not matter. • Multiple existential statements • x S, y T, P(x, y) • y T, x S, P(x, y) • The order does not matter.
Mixed Quantifiers • Mixed universal and existential statements • x S, y T, P(x, y) • y T, x S, P(x, y) • The order does matter. • What is the difference? • Compare • x R, y R, x + y = 0. • y R, x R, x + y = 0.
Mixed Quantifiers • Which of the following are true? x R, y R, z R, x(y + z) = 0. x R, y R, z R, x(y + z) = 0. x R, y R, z R, x(y + z) = 0.
Multiply Quantified Statements • In the statement x R, y R, z R, x(y + z) = 0. the predicate x(y + z) = 0 must be true for every y and for some x and for some z. • However, the choice of xmust not depend on y, while the choice of zmay depend on y.
Examples • Which of the following statements are true? • x N, y N, y < x. • x Q, y Q, y < x. • x R, y R, y < x. • x Q, y Q, z Q, x < z < y.
Negation of Multiply Quantified Statements • Negate the statement x R, y R, z R, x(y + z) = 0.
Negation of Multiply Quantified Statements • Negate the statement x R, y R, z R, x + y + z = 0. • (x R, y R, z R, x + y + z = 0)
Negation of Multiply Quantified Statements • Negate the statement x R, y R, z R, x + y + z = 0. • (x R, y R, z R, x + y + z = 0) x R, (y R, z R, x + y + z = 0)
Negation of Multiply Quantified Statements • Negate the statement x R, y R, z R, x + y + z = 0. • (x R, y R, z R, x + y + z = 0) x R, (y R, z R, x + y + z = 0) x R, y R, (z R, x + y + z = 0)
Negation of Multiply Quantified Statements • Negate the statement x R, y R, z R, x + y + z = 0. • (x R, y R, z R, x + y + z = 0) x R, (y R, z R, x + y + z = 0) x R, y R, (z R, x + y + z = 0) x R, y R, z R, (x + y + z = 0)
Negation of Multiply Quantified Statements • Negate the statement x R, y R, z R, x + y + z = 0. • (x R, y R, z R, x + y + z = 0) x R, (y R, z R, x + y + z = 0) x R, y R, (z R, x + y + z = 0) x R, y R, z R, (x + y + z = 0) x R, y R, z R, x + y + z 0
Negation of Multiply Quantified Statements • Consider the statement c R, x R, f(x) = cx has an x-intercept. • Its negation is c R, x R, f(x) = cx has no x-intercept. • Which statement is true? • How would you prove it?
Negation of Multiply Quantified Statements • Consider the statement m, b R, x R, f(x) = mx + b has an x-intercept. • Its negation is m, b R, x R, f(x) = mx + b has no x-intercept. • Which statement is true?
Negation of Multiply Quantified Statements • Consider the statement a, b, c R, x R, f(x) = ax2 + bx + c has an x-intercept. • Its negation is a, b, c R, x R, f(x) = ax2 + bx + c has no x-intercept. • Which statement is true?
Negation of Multiply Quantified Statements • Consider the statement b, c R, s, t R, x2 + bx + c = (x – s)2 + t. • Its negation is b, c R, s, t R, x2 + bx + c (x – s)2 + t. • Which statement is true?