1 / 11

Проект по физике на тему: «Центральные столкновения тел»

Проект по физике на тему: «Центральные столкновения тел». Пронаблюдать опыты с центральным столкновением тел. Подробно рассмотреть некоторые опыты с позиции физики. Задать вопросы по работе. Сделать вывод о проделанной работе. задачи проекта:. Выполняются два закона:.

Download Presentation

Проект по физике на тему: «Центральные столкновения тел»

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Проект по физике на тему:«Центральные столкновения тел» • Пронаблюдать опыты с центральным столкновением тел. • Подробно рассмотреть некоторые опыты с позиции физики. • Задать вопросы по работе. • Сделать вывод о проделанной работе. задачи проекта:

  2. Выполняются два закона: Рассмотрим опыт №1 с двумя шарами, когда m1=m2 при столкновении: Закон сохранения импульса. Закон сохранения энергии.

  3. 1) m1v1i + m2v2i = m1v1 + m2v2 – закон сохранения энергии импульса 2)m1v1i2 / 2 + m2v2i2 / 2 = m1v12 / 2 + m2v22 / 2 – закон сохранения энергииI) m1 (v1i - v1) = m2 (v2 - v2i)II)m1 (v1i2 - v12) = m2 (v22 - v2i2)Если разница между начальной и конечной скоростями не равна нулю (то есть столкновение действительно произошло), мы можем разделить второе из двух последних уравнений на первое, что дает:v1i + v1 = v2 + v2iилиv1i - v2i = v2 - v1Другими словами,  в одномерном случае упругих столкновений относительная скорость движения объектов после столкновения равняется относительной скорости движения до столкновения.Чтобы получить конечные скорости движения объектов через их начальные скорости и массы, нужно выразить v2 из последнего уравнения и подставить его в уравнение для закона сохранения импульса. Окончательно получаем:v1 = v1i (m1 - m2) / (m1 + m2) + v2i (2 m2) / (m1 + m2)Таким же способом находим выражение для  v2v2 = v1i (2 m1) / (m1 + m2) + v2i (m2 - m1) / (m2 + m1)Далее предположим, что сталкиваются объекты с одинаковой массой, т.е. m1=  m2 = m. В этом случае:v1 = v1i (m - m) / (m + m) + v2i (2 m) / (m + m)v2 = v1i (2 m) / (m + m) + v2i (m - m) / (m + m)Окончательно получаем, чтоv1 = v2i и v2 = v1i Это означает, что в случае центрального упругого соударения объектов с равными массами, они будут просто обмениваться скоростями. Если один из объектов до столкновения двигался, то после столкновения он остановится, а второй объект начнёт движение. При этом скорость движения второго объекта будет равна скорости первого объекта до столкновения.

  4. В общем случае центрального и абсолютно упругого столкновения объектов с разными массами, один из которых до столкновения покоился (v2i =0), можно записать следующие выражения для скоростей после удара: v1 = v1i (m1 - m2) / (m1 + m2)v2 = v1i (2 m1) / (m1 + m2)                Если масса налетающего шара m1 больше массы покоящегося шара m2 , то v1 и v2 будут положительными и оба шара после столкновения будут двигаться в одном направлении, совпадающем с направлением начального движения налетающего шара.                Если же масса налетающего шара m1 меньше массы покоящегося шара m2 , то v1 будет отрицательной, а v2 - положительной, и шары после столкновения будут разлетаться в противоположных направлениях. При этом, т.к. 2 m1>m1 - m2 , то маленький шарик отразиться с большей скоростью. Опыт №2 Шары имеют разную массу 1 2

  5. Опыт №3 Теперь рассмотрим случай, когда один шар сталкивается с цепочкой из нескольких одинаковых шаров, как показано на анимации. В этом случае налетающий шар обменивается скоростью со вторым шаром, второй - с третьим и т.д. В результате получаем, что после столкновения все шары кроме последнего будут находиться в покое, а последний шар отскочит ровно с той же самой скоростью, с которой двигался налетающий шар.

  6. Опыт №4 На практике центральные столкновения в цепочке одинаковых шаров можно пронаблюдать при помощи устройства, изображённого на анимации.  Здесь все шары подвешены на длинных нитях и  задача сводится к рассмотрению их попарного столкновения. При этом вся система будет вести себя, как показано на анимации, т.е. крайние шары будут поочерёдно отскакивать с одинаковой скоростью и отклоняться на нитях на одинаковый угол, а все шары, лежащие между ними, будут находиться в покое. Необходимо отметить, что приведенные выше рассуждения справедливы лишь для случая абсолютно упругого столкновения шаров, когда не происходит потери энергии. В реальности общая энергия системы будет со временем уменьшаться за счет трения о воздух, нагревания шаров, возбуждения акустических волн и т.д. В силу этого, со временем движение шаров изменяется. Амплитуда отскока крайних шаров уменьшается, а центральные шары начинают совершать колебательные движения.

  7. Опыт №5 Рассмотрим неупругий удар более подробно. При неупругом ударе часть кинетической энергии налетающего шара теряется с выделением тепла. В предельном случае абсолютно неупругого удара налетающее тело слепляется с покоящимся телом, кинетическая энергия их относительного движения обращается в ноль и они продолжают движение, как единое тело.  В некоторых случаях частично упругого удара в теле после столкновения будут возбуждаются деформационные колебания, затухающие со временем. Анимация показывает столкновение упругого шарика с жёсткой стенкой. При таком ударе в шарике возбуждаются моды деформационных колебаний, причём мода с наименьшей частотой превалирует.  Со временем эти колебания затухнут, а их энергия перейдёт в тепло. Таким образом, здесь имеет место процесс преобразования части кинетической энергии движущегося шарика в тепло с промежуточным этапом возбуждения деформационных колебаний.

  8. Рассматривая ранее упругое столкновение шара с цепочкой шаров одинаковой массы, мы пришли к выводу, что все промежуточные шары остаются в покое, а движутся лишь крайние.  Посмотрим что изменится, если соединить все промежуточные шары пружинами. Анимация показывает случай двух промежуточных шаров, соединённых пружиной. Мы видим, что промежуточные шары приводятся в колебательное движение, в то время как их общий центр масс практически неподвижен. Такая же картина возникает и в случае моделирования трёх, четырёх и более промежуточных шаров, соединённых пружинами. Со временем колебания затухнут и вся система будет напоминать цепочку свободных упругих шаров, рассмотренную ранее, но лишь отчасти. Затухшие колебания шаров унесли часть энергии системы в виде тепла, а значит скорость самого правого шара должна быть меньше скорости налетающего шара. Опыт №6 Возбуждение таких колебаний можно смоделировать при помощи двух одинаковых шариков, соединённых пружиной. Предположим, что абсолютно упругий шар сталкивается с пружинным осциллятором, как изображено на анимации. Массы всех шаров одинаковы и равны m. Так как в момент удара пружина ещё не действует, налетающий шар останавливается, а левый шар осциллятора приводится в движение со скоростью налетающего шара v. При этом центр масс осциллятора движется со скоростью v/2. Со временем колебания осциллятора затухнут и он будет продолжать поступательное движение со скоростью v/2, а суммарная энергия всей системы составит лишь половину от энергии налетающего шара. Другая половина выделится в виде тепла в осцилляторе.

  9. Опыт №7 Рассмотрим далее упругое столкновение некоторого тела с баллистическим маятником, которое представляет собой тяжёлое тело, подвешенное на четырёх нитях длины L. После удара налетающее тело отразиться, а маятник начнёт качаться на нитях, так что его продольная ось остаётся параллельной самой себе, а центр масс движется по окружности. При этом амплитуда колебаний баллистического маятника пропорциональна скорости налетающего тела. Таким методом измеряют скорость полёта пули V. Однако, в отличие от случая, изображённого на анимации, маятник конструируют таким образом, чтобы пуля застревала в нём. Пренебрегая массой пули m по сравнением с массой маятника M, можно считать что весь импульс пули переходит маятнику, который начинает движение со скоростью v=(M/m)V. Когда маятник отклонён на максимальный угол j, вся его начальная кинетическая энергия переходит в потенциальную Mgh, где h - высота подъёма центра масс. Окончательно получаем v = (2M/m)(Lg)1/2sin(j/2),

  10. ВОПРОСЫ • Какое столкновение называют центральным? • Что произойдет с двумя шарами, имеющими одинаковую массу, при столкновении, если брать идеальные условия? • Почему в реальных условиях происходят потери энергии? На что затрачивается эта энергия?

  11. Вывод УЧИТЕ ФИЗИКУ, А ОСТАЛЬНОЕ ПРИЛОЖИТСЯ!!! Итак, мы выяснили, какое же столкновение называется центральным, пронаблюдали опыты с центральными столкновениями тел и рассмотрели некоторые из них с позиции физики.

More Related