400 likes | 572 Views
Group Contribution Methods for Predicting Properties of Systems Containing Polymers . Grozdana Bogdanić Institute of Chemical Process Fundamentals ASCR, Prague. POLY − MER many units −M−M−M−M−M−M−M−M−M−M− or −(M) n − . Modeling
E N D
Group Contribution Methods for Predicting Properties of Systems Containing Polymers Grozdana Bogdanić Institute of Chemical Process Fundamentals ASCR, Prague
POLY − MER many units −M−M−M−M−M−M−M−M−M−M− or −(M)n−
Modeling • description of thermophysical properties (vapor pressures, viscosities, caloric data, etc.) of pure components and mixtures • properties of different apparatuses like reactors, distillation columns, pumps, etc. • chemical reactions and kinetics • environmental and safety-related data
Two main different types of models can be distinguished: • Rather simple equations and correlations where parameters are fitted to experimental data • Predictive methods where properties are estimated
VLE • 1.1. Group contribution methods for predicting the • properties of polymer–solvent mixtures • Activity coefficient models • Equations of state • 2. LLE • 2.1. Group contribution methods for predicting the • properties of polymer–solvent mixtures • Activity coefficient models • Equations of state • 2.2. Group contribution methods for predicting the properties • of polymer–polymer mixtures (polymer blends) • 3. Conclusions
G. Bogdanić: Additive Group Contribution Methods for Predicting the Properties of Polymer systems In: Polymeric Materials, Chapter 7 Transworld Reserach Signpost, Trivandrum, India (2009).
G. Bogdanić, I.Wichterle, A. Erceg Kuzmić: Collection of Miscibility Data and Phase Behavior of Binary Polymer Blends based on Styrene, 2,6-Dimethyl-1,4-Phenylene Oxide and of Their Derivatives Transworld Research Signpost, Trivandrum, India (2010).
Group Contribution Methods for Predicting Properties of Polymer – Solvent Mixtures (VLE)
The UNIFAC-FV Model T.Oishi, J. M.Prausnitz, 1978. combinatorialresidualfree-volume
The Entropic-FV Model H. S.Elbro, Aa.Fredenslund, P.Rasmussen, 1990. G. M.Kontogeorgis, Aa.Fredenslund, D. P.Tassios, 1993. (UNIFAC) The free-volume definition:
The GC-Flory EOS F.Chen, Aa.Fredenslund, P.Rasmussen, 1990. G.Bogdanić, Aa.Fredenslund, 1994. combinatorialFV attractive N. Muro-Suñé, R. Gani, G. Bell, I. Shirley, 2005.
The GC-Lattice-Fluid EOS M. S.High, R. P.Danner, 1989; 1990. B. C. Lee, R. P. Danner, 1996.
UNIFAC-FV Entropic-FV GC-Flory GC-LF (1990) Prediction of infinite dilution activity coefficients versus experimental values for polymer solutions (more than 120 systems) [G. Bogdanić, Aa. Fredenslund, 1995]
Prediction of infinite dilution activity coefficients versus experimental values for systems containing nonpolar solvents (215-246 systems) [B. C. Lee, R .P. Danner, 1997]
Predictions of infinite dilution activity coefficients versus experimental values for systems containing weakly polar solvents (cca 60 systems) [B. C. Lee, R. P. Danner, 1997]
Predictions of infinite dilution activity coefficients versus experimental values for systems containing strongly polar solvents (cca 30 systems) [B. C. Lee, R. P. Danner, 1997]
T = 383 K T = 373 K T = 322 K Activity of 2-methyl heptane in PVC (Mn = 30000; Mn = 105000) Activity of ethyl benzene in PBD (Mn = 250000) Activity of MEK in PS (Mn = 103000) [G. Bogdanić, Aa. Fredenslund, 1995]
LLE Polymer solutions Polymer blends
PVAL–water binary mixture at 420 K x104 GM/RT versus molar fraction (GM/RT – se) versus molar fraction of the polymer of the polymer
The Segmental Interaction UNIQUAC-FV Model(s) G.Bogdanić, J.Vidal, 2000. G. D. Pappa, E. C. Voutsas, D. P. Tassios, 2001.
Correlation () of LLE PEG/water system by the UNIQUAC–FV model [J. Vidal, G. Bogdanić, 1998]
Correlation and prediction of LLE for PBD/n-octane by the UNIQUAC-FV model[G. Bogdanić, J. Vidal,2000] Mv=65000 g/mol,correlation Mv=135000 g/mol, prediction Mw=44500 g/mol,- - - - prediction
Correlation and prediction of LLE for poly(S-co-BMA)/MEK by the UNIQUAC-FV model [G. Bogdanić, J. Vidal,2000] poly(S0.54-co-BMA0.46), Mw = 40000 g/mol, correlation poly(S0.80-co-BMA0.20), Mw = 250000 g/mol, - - - - prediction
The GC-Flory EOS G.Bogdanić, Aa.Fredenslund, 1994. G.Bogdanić, 2002. LLE parameters
Coexistence curves for HDPE/n-hexane systems as correlated by the GC-Flory EOS () [G.Bogdanić, 2002]
Coexistence curves for PIB/n-hexane systems as correlated by the GC-Flory EOS ()[G.Bogdanić, 2002]
The Mean-Field Theory R. P. Kambour, J. T. Bendler, R. C. Bopp, 1983. G.ten Brinke, F. E.Karasz, W. J.MacKnight, 1983. combinatorial residual
T = 473 K Miscibility of poly(S-co-oClS)/SPPOMiscibility of poly(S-co-pClS)/SPPO () one phase; () two phases;() predicted miscibility/immiscibility boundaryby the mean-field model [G. Bogdanić, R. Vuković, et. al., 1997]
Miscibility behavior ofPPO/poly(oFS-co-pClS) system(------) correlated by the UNIQUAC-FV model [G. Bogdanić, 2006]
T = 473 K Miscibility of SPPO/poly(oBrS-co-pBrS) system()correlated by the UNIQUAC-FV model [G. Bogdanić, 2006]
Thermodynamic Databases for Polymer Systems • H. Wen, H.S. Elbro, P. Alessi,Polymer Solution Data Collection, Dechema Chemistry Series, Frankfurt, 1992. • M.S. High, R.P. Danner, Polymer Solution Handbook; DIPPR 881 Project. Design Institute forPhysical Property Data, 1992. • C. Wohlfarth,Vapor-Liquid Equilibrium Data of Binary Polymer Solutions, Elsevier, Amsterdam, 1994. • P.Zoller, D.J. Walsh, Standard Pressure-Volume- Temperature Data for Polymers, TechnomicsPublishing Co., Lancaster, 1995.