110 likes | 261 Views
New Lower Bounds for Seven Classical Ramsey Numbers R(3,q). Kang Wu South China Normal University Wenlong Su Guangxi University Wuzhou Branch Haipeng Luo , Xiaodong Xu Guangxi Academy of Sciences 2006 年 8 月.
E N D
New Lower Bounds for Seven Classical Ramsey Numbers R(3,q) Kang Wu South China Normal University Wenlong Su Guangxi University Wuzhou Branch Haipeng Luo , Xiaodong Xu Guangxi Academy of Sciences 2006年8月
1、Known results on the Ramsey numbers R(3,q) in S.P.Radziszowski, Small Ramsey numbers, Elec.J.Comb.,DS1#10, (2006),1-48 . R(3,25)>=143 R(3,26)>=150 R(3,28)>=164 R(3,29)>=174
2、The new lower bounds: Theorem: R(3,24)>=143,R(3,25)>=153, R(3,26)>=159,R(3,27)>=167, R(3,28)>=172,R(3,29)>=182,R(3,30)>=187
3、Three formulas in S.P. Radziszowski,Small Ramsey numbers, Elec.J.Comb.,DS1#10,(2006),1-48 . • R(3,4k+1)>=6R(3,k+1)-5(1) • R(5,k)>=4R(3,k-1)-3 (2) • R(3,k,l+1)>=4R(k,l)-3 (3)
As a consequence of Theorem and the formulas(1),(2)and(3),we obtain Corollary1.R(3,93)>=853, R(3,97)>=913, R(3,101)>=949, R(3,105)>=997, R(3,109)>=1027, R(3,113)>=1087, R(3,117)>=1117 Corollary2.R(5,25)>=569, R(5,26)>=609, R(5,27)>=633, R(5,28)>=665, R(5,29)>=685, R(5,30)>=725, R(5,31)>=745 Corollary3.R(3,3,25)>=569, R(3,3,26)>=609, R(3,3,27)>=633, R(3,3,28)>=665, R(3,3,29)>=685, R(3,3,30)>=725, R(3,3,31)>=745
Given n and the set S1, the algorithm gives the clique number [A2] of Gn[A2] and the first clique of length [Ai]. The detail is listed in the following table
5、Comments • We also point out other lower bounds such as R(3,17)>=92,R(3,18)>=98,R(3,19)>=106,R(3,20)>=109,R(3,21)>=122,R(3,22)>=125,R(3,23)>=136. These results were obtained by Wang Qingxian and Wang Gongben in 1994 and recorded in S.P.Radziszowski,Small Ramsey numbers, Elec.J.Comb.,DS1#10,(2004),1-48 . According to the reference in it, their paper [WWY1] has not been published. Hence our work verifies these results.