1 / 74

DNA Sequencing

DNA Sequencing. From Extraction to Information. The Process. Step 1: DNA Extraction Genomic DNA extraction from the organism ( bacteria ). Step 2: PCR Amplification Amplification of the DNA segment of interest ( 16S gene ). Step 3: DNA Sequencing

sancha
Download Presentation

DNA Sequencing

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DNA Sequencing From Extraction to Information

  2. The Process • Step 1: DNA Extraction • Genomic DNA extraction from the organism (bacteria) • Step 2: PCR Amplification • Amplification of the DNA segment of interest (16S gene) • Step 3: DNA Sequencing • Sequencing of the PCR product (amplified16S gene)

  3. Step 1: DNA Extraction DNA Extraction DNA Cells with DNA

  4. Step 2: PCR Amplification PCR Product (Amplified Target Gene) Target Gene Target Gene PCR Amplification DNA

  5. Step 3: DNA Sequencing PCR product (Amplified Target Gene) Sequence of Target Gene DNA Sequencing AGCTGCTAAGCTTG AGCTTGCACAAGCT TAGCTTGCAAGCTT AGCTTGCAAGCTTG CAAGCTTGCAAGCT TGCAAGCTTGCAAG CTTGCAACGTTGCA AGCTTGCAAGCTTG AAGCTTGCAAGCTA

  6. Chapter 1:DNA Extraction

  7. The Cell and its Components DNA (1%) phospholipids (2%) 30% chemicals polysaccharides (2%) Ions, small molecules (4%) RNA (6%) 70% H2O proteins (15%)

  8. Three basic steps of DNA extraction • Disruption of cell and lysis • Removal of proteins and other biochemicals • Recovery of DNA

  9. Disruption of cell and lysis • Cells are broken down into components using a Lysis Buffer containing: • EDTA: disrupts cell membrane and inhibits DNases • SDS: denatures proteins and solubilizes cell membranes • Proteinase K: breaks down proteins • RNase A: breaks down RNA • Solution is incubated at 55ºC 1-3 hours (or overnight)

  10. Disruption of cell and lysis DNA RNA ions lipids proteins + + + + EDTA RNase A Proteinase K SDS EDTA

  11. Disruption of cell and lysis • After lysis, cell extract contains DNA, proteins, and other chemicals/biochemicals cell extract

  12. Removal of proteins and biochemicals • Solid phase binding (silica membrane) • Cell extract is applied to a silica membrane column • DNA binds to membrane • all other molecules flow through and are removed DNA bound to membrane Silica membrane centrifugation cell extract flow-thru

  13. Recovery of DNA • Elution of silica membrane: • a low-salt buffer or water is added to the membrane • bound DNA falls off of the membrane elution add water (or buffer) DNA bound to membrane centrifugation DNA in solution

  14. ReviewStep 1: DNA Extraction DNA Extraction DNA Cells with DNA

  15. Chapter 2: PCR Amplification

  16. Step 2: PCR Amplification PCR Product (Amplified Target Gene) Target Gene Target Gene PCR Amplification DNA

  17. Part I: DNA Polymerization

  18. DNA Building Block base 5’ P P P OCH2 O sugar 4’ 1’ H phoshpate groups H 3’ 2’ OH H deoxyribose nucleotide triphosphate (dNTP)

  19. DNA Polymerization: Basics A Existing DNA Strand O O G P O O C P O O T P Phosphodiester bond O H dNTP O T P P P O H O A P P P O H O C P P P O H

  20. DNA Polymerization • The synthesis of DNA requires: • DNA template • Primer: short oligonucleotide necessary for DNA polymerase to start • DNA polymerase: enzyme that constructs the DNA chain • deoxyribonucleotide triphosphates (dNTPs): building blocks of DNA A C C G G G A A G C C C C G G A T G A DNA polymerase A C G T DNA polymerase G A T G A G T T C G T G T C C G T A C A A C T G G C G T A A T C A T G G C C C T T C G G G G C C T A C T C A A G C A C A G G C A T G T T G A C C G C A T T A G T A C C G G G A A G C C C C G

  21. DNA Replication Review • Step 1: Denaturation: separation of the two strands of the DNA duplex • Gyrase pulls apart the strands creating a “replication bubble” • Helicase travels down DNA molecule, breaking the hydrogen bonds that hold the two strands together gyrase helicase helicase G A T G A G T T C G T G T C C G T A C A A C T G G C G T A A T C A T G G C C C T T C G G G G C C T A C T C A A G C A C A G G C A T G T T G A C C G C A T T A G T A C C G G G A A G C C C C G gyrase

  22. DNA Replication Review • Step 2: Annealing of primers to the DNA template strand • Primase synthesizes small complementary strands of RNA (“primers”) to the single strands of the DNA template primase G A T G A G T T C G T G T C C G T A C A A C T G G C G T A A T C A T G G C C C T T C G G G G C G C C C C G primase G A T G A G C T A C T C A A G C A C A G G C A T G T T G A C C G C A T T A G T A C C G G G A A G C C C C G

  23. DNA Replication Review • Step 3: Extension of newly constructed complementary DNA molecules • DNA polymerase adds bases to the ends of the primers, constructing an exact copy of the template DNA polymerase G A T G A G T T C G T G T C C G T A C A A C T G G C G T A A T C A T G G C C C T T C G G G G C C T A C T C A A G C A C A G G C A T G T T G A C C G C A T T A G T A C C G G G A A G C C C C G DNA polymerase G A T G A G T T C G T G T C C G T A C A A C T G G C G T A A T C A T G G C C C T T C G G G G C C T A C T C A A G C A C A G G C A T G T T G A C C G C A T T A G T A C C G G G A A G C C C C G

  24. DNA Replication Review • Another DNA Polymerase replaces the RNA primer with dNTPs • The final result: two copies of replicated DNA DNA polymerase G A T G A G T T C G T G T C C G T A C A A C T G G C G T A A T C A T G G C C C T T C G G G G C C T A C T C A A G C A C A G G C A T G T T G A C C G C A T T A G T A C C G G G A A G G C C C C C C C C G G DNA polymerase G G A A T T G G A A G G T T C G T G T C C G T A C A A C T G G C G T A A T C A T G G C C C T T C G G G G C C T A C T C A A G C A C A G G C A T G T T G A C C G C A T T A G T A C C G G G A A G C C C C G

  25. P P P P P P P O O O O O O O O O O O O O O P P P P P P P P P P P P P P A C G T G T C P P P P P P O O O O O O O O O O O O O T C G A T A A G C T A T G C A A G C T O O O O O O O O O O O O O O O O O O O O O O O O O O O O P P P P P P P P P P P P P P Polymerization 1)DNA Template Mg2+ Mg2+ Mg2+ Mg2+ Mg2+ Mg2+ Mg2+ 2)Primer 3)DNA Polymerase Mg2+ ions 4)dNTPs dNTPs 5)Mg2+ ions DNA Polymerase DNA Polymerase Primer Phosphodiester bond DNA Template

  26. Part II: PCR

  27. T A G T A C T C A G T A The Polymerase Chain Reaction • Polymerase Chain Reaction: cycling process consisting of the same 3 steps of DNA replication, with some differences: • temperature cycling removes the need for other enzymes (gyrase/helicase, or primase) • PCR uses pre-made oligonucleotide DNA primers DNA polymerase gyrase primase helicase

  28. The Polymerase Chain Reaction • During PCR, a thermocycler brings the reaction mix to 3 different temperatures analagous to the 3 steps of DNA replication • Denaturation (94˚C) of the DNA template by heat • Annealing (37˚-70˚C) of the primers to the template • Extension (72˚C) of the DNA strand by DNA polymerase • These steps are repeated for 25 to 30 cycles 94˚C 65˚C 72˚C denaturation annealing extension

  29. Thermocycler Program • Initial Denaturation: 94˚C 2 min • Start Cycle • Denaturation 94˚C 30 sec • Annealing 65˚C 30 sec • Extension 72˚C 30 sec • Repeat Cycle 29 times (total = 30 cycles) • Final Extension 72˚C 7 min • Hold 4˚C ∞

  30. Denaturation • Denaturation occurs at 94˚C • The high temperature is used to break down the hydrogen bonds that hold the two strands together 94˚C G A T G A G T T C G T G T C C G T A C A A C T G G C G T A A T C A T G G C C C T T C G G G G C C T A C T C A A G C A C A G G C A T G T T G A C C G C A T T A G T A C C G G G A A G C C C C G

  31. T A G T A C T C A G T A Annealing • Annealing occurs at 37˚-70˚C • Oligonuclotide DNA primers anneal to their complementary sequences on the template strands • Annealing temperature depends on the melting temperature (Tm) of the primer (dependent on base composition) 94˚C 65˚C G A T G A G T T C G T G T C C G T A C A A C T G G C G T A A T C A T G G C C C T T C G G G G C C T A C T C A A G C A C A G G C A T G T T G A C C G C A T T A G T A C C G G G A A G C C C C G

  32. Extension • Extension occurs at 72˚C • DNA polymerase attaches to the primers and extends the new DNA strand • The 3 steps (denaturation, annealing, and extension) are repeated for another 24 to 29 cycles 65˚C 72˚C DNA polymerase G A T G A G T T C G T G T C C G T A C A A C T G G C G T A A T C A T G G C C C T T C G G G G C C T A C T C A A G C A C A G G C A T G T T G A C C G C A T T A G T A C DNA polymerase T C A G T A C A A C T G G C G T A A T C A T G G C C C T T C G G G G C C T A C T C A A G C A C A G G C A T G T T G A C C G C A T T A G T A C C G G G A A G C C C C G

  33. Target Sequence • A desired target sequence is identified • To isolate the target sequence, primers that flank the region must be constructed • The DNA segment that is then amplified contains the region of interest Template DNA Forward Primer Reverse Primer Target Sequence of interest PCR Product

  34. PCR: Cycle 1 Denaturation Extension Annealing DNA Copies 4 Target Copies 0 Target Sequence of interest

  35. PCR: Cycle 2 Denaturation Extension Annealing DNA Copies 8 Target Copies 2

  36. PCR: Cycle 3 Denaturation Extension Annealing DNA Copies 16 Target Copies 8

  37. PCR: Cycle 4 Denaturation Extension Annealing DNA Copies 32 Target Copies 22

  38. PCR: Cycle 5 Denaturation Extension Annealing DNA Copies 64 Target Copies 52

  39. PCR Amplification: First 10 cycles

  40. PCR Amplification: First 15 cycles

  41. PCR Amplification: After 30 cycles

  42. PCR Amplification: After 30 cycles

  43. ReviewStep 1: DNA Extraction DNA Extraction DNA Cells with DNA

  44. ReviewStep 2: PCR Amplification PCR Product (Amplified Target Gene) Target Gene Target Gene PCR Amplification DNA

  45. Chapter 3:DNA Sequencing

  46. Nucleotides BASE BASE OCH2 P P P OCH2 P P P O O H H H H OH H OH OH deoxyribose NTP (dNTP) (Makes up DNA) ribose NTP (NTP) (Makes up RNA) BASE OCH2 P P P O H H H H dideoxyribose NTP (ddNTP)

  47. DNA Sequencing • Dideoxy method of DNA sequencing (Sanger Method) • Single-stranded DNA to be sequenced serves as a template strand for DNA synthesis • single primer is used for DNA synthesis initiation • use of dNTPs along with labeled ddNTPs BASE BASE OCH2 OCH2 P P P P P P O O H H H H OH H H H dNTP ddNTP

  48. DNA Polymerization using ddNTPs A A O O O G P O G P O O O C P O C P O O O T P O C P O H O H O T P P P O T P P P O H H O A P P P O A P P P O H O H O C P P P Chain Termination O H

  49. Sequence Reaction • BigDye Terminator v3.1 Sequencing: • a Dye Terminator Cycle Sequencing Master Mix is used for sequencing reaction. Components include: • DNA polymerase I, Mg2+, buffer • dNTPs in ample quantities: • (dATP, dTTP, dCTP, dGTP) • ddNTPs in limited quantities, each labeled with a “tag” that fluoresces a different “color”: • (ddATP, ddTTP, ddCTP, ddGTP)

  50. The Polymerase Chain Reaction • PCR makes use of a thermocycler to bring the reaction mix to three different temperatures • Denaturation (94˚C) of the DNA template by heat • Annealing (37˚-70˚C) of the primers to the template • Extension (72˚C) of the DNA strand by DNA polymerase • These steps are repeated for 25 to 30 cycles 94˚C 65˚C 72˚C denaturation annealing extension

More Related