1 / 20

Measuring Errors خطاهای محاسباتی

Measuring Errors خطاهای محاسباتی. Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker Presented by: دکتر ابوالفضل رنجبر نوعی http://numericalmethods.eng.usf.edu Transforming Numerical Methods Education for Amol Undergraduates Students.

sandram
Download Presentation

Measuring Errors خطاهای محاسباتی

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Measuring Errorsخطاهای محاسباتی Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker Presented by: دکتر ابوالفضل رنجبر نوعی http://numericalmethods.eng.usf.edu Transforming Numerical Methods Education for Amol Undergraduates Students http://numericalmethods.eng.usf.edu

  2. Measuring Errors خطاهای محاسباتی http://numericalmethods.eng.usf.edu http://numericalmethods.eng.usf.edu

  3. Why measure errors? فلسفه اندازه گیری خطا 1) To determine the accuracy of numerical results. به منظور اندازه گیری صحت نتایج عددی 2) To develop stopping criteria for iterative algorithms. تعیین معیار توقف برنامه های تکراری دکتر ابوالفضل رنجبر نوعی 89-90-2-آمل- آمل http://numericalmethods.eng.usf.edu

  4. True Error • Defined as the difference between the true value in a calculation and the approximate value found using a numerical method etc. خطا = مقدار واقعی – مقدار محاسبه شده. True Error = True Value – Approximate Value دکتر ابوالفضل رنجبر نوعی 89-90-2-آمل- آمل http://numericalmethods.eng.usf.edu

  5. Example—True Error مثال: خطای واقعی مشتق تابع با رابطه زیر تقریب زده میشود: The derivative, of a function can be approximated by the equation, and If پیدا کردن مقدار تقریبیa) Find the approximate value of پیدا کردن مقدار واقعی b) True value of محاسبه مقدار خطا c) True error for part (a) دکتر ابوالفضل رنجبر نوعی 89-90-2-آمل- آمل http://numericalmethods.eng.usf.edu

  6. Example (cont.)ادامه Solution: جواب a) For and دکتر ابوالفضل رنجبر نوعی 89-90-2-آمل- آمل http://numericalmethods.eng.usf.edu

  7. Example (cont.) مقدار واقعی از مقدار خود تابع به دست می آید. Solution: b) The exact value of can be found by using our knowledge of differential calculus. So the true value of is خطا: True error is calculated as True Value – Approximate Value دکتر ابوالفضل رنجبر نوعی 89-90-2-آمل- آمل http://numericalmethods.eng.usf.edu

  8. Relative True Errorخطای نسبی • Defined as the ratio between the true error, and the true value. True Error ) = Relative True Error ( True Value دکتر ابوالفضل رنجبر نوعی 89-90-2-آمل- آمل http://numericalmethods.eng.usf.edu

  9. Example—Relative True Errorخطای نسبی واقعی Following from the previous example for true error, find the relative true error for at with From the previous example, Relative True Error is defined as as a percentage, دکتر ابوالفضل رنجبر نوعی 89-90-2-آمل- آمل http://numericalmethods.eng.usf.edu

  10. Approximate Errorخطای تقریبی • What can be done if true values are not known or are very difficult to obtain? • Approximate error is defined as the difference between the present approximation and the previous approximation. Approximate Error ( ) = Present Approximation – Previous Approximation اگر مقادیرواقعی متغیر معلوم نباشد، خطای تقریبی از تفاوت خطاهای جاری و قبلی بدست می آید. دکتر ابوالفضل رنجبر نوعی 89-90-2-آمل- آمل http://numericalmethods.eng.usf.edu

  11. Example—Approximate Error For at find the following, a) using b) using c) approximate error for the value of for part b) Solution: a) For and دکتر ابوالفضل رنجبر نوعی 89-90-2-آمل- آمل http://numericalmethods.eng.usf.edu

  12. Example (cont.) Solution: (cont.) b) For and دکتر ابوالفضل رنجبر نوعی 89-90-2-آمل- آمل http://numericalmethods.eng.usf.edu

  13. Example (cont.) Solution: (cont.) c) So the approximate error, is Present Approximation – Previous Approximation دکتر ابوالفضل رنجبر نوعی 89-90-2-آمل- آمل http://numericalmethods.eng.usf.edu

  14. Relative Approximate Error • Defined as the ratio between the approximate error and the present approximation. Approximate Error Relative Approximate Error ( ) = Present Approximation دکتر ابوالفضل رنجبر نوعی 89-90-2-آمل- آمل http://numericalmethods.eng.usf.edu

  15. Example—Relative Approximate Error خطای نسبی تقریبی For at , find the relative approximate error using values from and Solution: From Example 3, the approximate value of using and using Present Approximation – Previous Approximation دکتر ابوالفضل رنجبر نوعی 89-90-2-آمل- آمل http://numericalmethods.eng.usf.edu

  16. Example (cont.) Solution: (cont.) Approximate Error Present Approximation as a percentage, Absolute relative approximate errors may also need to be calculated, خطای مطلق دکتر ابوالفضل رنجبر نوعی 89-90-2-آمل- آمل http://numericalmethods.eng.usf.edu

  17. استفاده از خطای مطلق به عنوان معیار توقف برنامه How is Absolute Relative Error used as a stopping criterion? If where is a pre-specified tolerance, then no further iterations are necessary and the process is stopped. توقف برنامه وقتی که خطا، کمتر از میزان مطلوب گردید. If at least m significant digits are required to be correct in the final answer, then توقف برنامه با چند رقم با معنی دکتر ابوالفضل رنجبر نوعی 89-90-2-آمل- آمل http://numericalmethods.eng.usf.edu

  18. Table of Values For at with varying step size, دکتر ابوالفضل رنجبر نوعی 89-90-2-آمل- آمل http://numericalmethods.eng.usf.edu

  19. Additional Resources For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit http://numericalmethods.eng.usf.edu/topics/measuring_errors.html http://numericalmethods.eng.usf.edu

  20. THE END http://numericalmethods.eng.usf.edu http://numericalmethods.eng.usf.edu

More Related