1 / 18

Approximate the temperature of the plate at (1,0)

Approximate the temperature of the plate at (1,0). function pdemodel99 [pde_fig,ax]=pdeinit; pdetool('appl_cb',1); pdetool('snapon','on'); set(ax,'DataAspectRatio',[1 1.0499999999999998 1]); set(ax,'PlotBoxAspectRatio',[1.4285714285714286 0.95238095238095255 1.4285714285714286]);

sandro
Download Presentation

Approximate the temperature of the plate at (1,0)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Approximate the temperature of the plate at (1,0)

  2. function pdemodel99 [pde_fig,ax]=pdeinit; pdetool('appl_cb',1); pdetool('snapon','on'); set(ax,'DataAspectRatio',[1 1.0499999999999998 1]); set(ax,'PlotBoxAspectRatio',[1.4285714285714286 0.95238095238095255 1.4285714285714286]); set(ax,'XLim',[-1 1]); set(ax,'YLim',[-1 1]); set(ax,'XTick',[ -1,... -0.90000000000000002,... -0.80000000000000004,... -0.69999999999999996,... -0.59999999999999998,... -0.5,... -0.39999999999999991,... -0.29999999999999993,... -0.19999999999999996,... -0.099999999999999978,... 0,... 0.099999999999999978,... 0.19999999999999996,... 0.29999999999999993,... 0.39999999999999991,... 0.5,... 0.59999999999999998,... 0.69999999999999996,... 0.80000000000000004,... 0.90000000000000002,... 1,... ]); set(ax,'YTick',[ -1,... -0.90000000000000002,... -0.80000000000000004,... -0.69999999999999996,... -0.59999999999999998,... -0.5,... -0.39999999999999991,... -0.29999999999999993,... -0.19999999999999996,... -0.099999999999999978,... 0,... 0.099999999999999978,... 0.19999999999999996,... 0.29999999999999993,... 0.39999999999999991,... 0.5,... 0.59999999999999998,... 0.69999999999999996,... 0.80000000000000004,... 0.90000000000000002,... 1,... ]); pdetool('gridon','on');

  3. pdecirc(0,0,0.3,'C1'); pderect([0 1 0 1],'SQ1'); pdepoly([ 0,0.5,0.5,0.2,0],[ 0,0,0.6,0.3,0.6],'P1');

  4. function pdemodel [pde_fig,ax]=pdeinit; pdetool('appl_cb',1); pdetool('snapon','on'); set(ax,'DataAspectRatio',[1 0.80000000000000004 1]); set(ax,'PlotBoxAspectRatio',[3.75 2.5 1]); set(ax,'XLim',[-1.5 6]); set(ax,'YLim',[-1 3]); set(ax,'XTickMode','auto'); set(ax,'YTickMode','auto'); pdetool('gridon','on'); % Geometry description: pdepoly([ 0,... 5, 4,1,],... [ 0,0, 1.7320508075688772, 1.7320508075688772,... ],... 'P1'); % Mesh generation: setappdata(pde_fig,'trisize',1); setappdata(pde_fig,'Hgrad',1.3); setappdata(pde_fig,'refinemethod','regular'); setappdata(pde_fig,'jiggle',char('on','mean','')); pdetool('initmesh') pdetool('refine') pdetool('refine') pdetool('refine') pdetool('refine') % PDE coefficients: pdeseteq(1,... '1.0',... '0.0',... '1.5/1.04',... '1.0',... '0:10',... '0.0',... '0.0',... '[0 100]') setappdata(pde_fig,'currparam',... ['1.0 ';... '0.0 ';... '1.5/1.04';... '1.0 ']) % Solve parameters: setappdata(pde_fig,'solveparam',... str2mat('0','8064','10','pdeadworst',... '0.5','longest','0','1E-4','','fixed','Inf')) % Plotflags and user data strings: setappdata(pde_fig,'plotflags',[1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1]); setappdata(pde_fig,'colstring',''); setappdata(pde_fig,'arrowstring',''); setappdata(pde_fig,'deformstring',''); setappdata(pde_fig,'heightstring',''); % Solve PDE: pdetool('solve') set(findobj(get(pde_fig,'Children'),'Tag','PDEEval'),'String','P1') % Boundary conditions: pdetool('changemode',0) pdesetbd(4,... 'neu',... 1,... '0',... '4') pdesetbd(3,... 'dir',... 1,... '1',... '15') pdesetbd(2,... 'neu',... 1,... '0',... '4') pdesetbd(1,... 'neu',... 1,... '0',... '0')

  5. Approximate the temperature of the plate at (1,0)

  6. [pde_fig,ax]=pdeinit; pdecirc(-0.6,0,0.1,'C1'); % center then radius pderect([-0.9 0.9 -0.5 0.5],'R1'); % x-values then y-values set(findobj(get(pde_fig,'Children'),'Tag','PDEEval'),'String','R1-C1')

  7. function pdemodel [pde_fig,ax]=pdeinit; set(ax,'XLim',[-1.5 1.5]); set(ax,'YLim',[-1 1]); set(ax,'XTickMode','auto'); set(ax,'YTickMode','auto'); % Geometry description: pderect([-0.8 0.9 0.6 -0.8],'R1'); pdecirc(-0.7,0.5,0.1,'C1'); pderect([-0.8 -0.7 0.6 0.5],'SQ1'); set(findobj(get(pde_fig,'Children'),'Tag','PDEEval'),'String','R1-SQ1+C1')

  8. Potential Flow Over a Wing When designing aircrafts it is very important to know the areodynamical properties of the wings function g=Airfoil() g=[2 17.7218 16.0116 1.5737 1.6675 1 0 2 16.0116 9.0610 1.6675 1.3668 1 0 2 9.0610 -0.5759 1.3668 -0.1102 1 0 2 -0.5759 -9.5198 -0.1102 -1.8942 1 0 2 -9.5198 -15.6511 -1.8942 -2.5938 1 0 2 -15.6511 -18.1571 -2.5938 -1.7234 1 0 2 -18.1571 -16.9459 -1.7234 0.2051 1 0 2 -16.9459 -12.4137 0.2051 2.2238 1 0 2 -12.4137 -5.4090 2.2238 3.4543 1 0 2 -5.4090 2.8155 3.4543 3.5046 1 0 2 2.8155 10.6777 3.5046 2.6664 1 0 2 10.6777 16.3037 2.6664 1.7834 1 0 2 16.3037 17.7218 1.7834 1.5737 1 0 2 -30.0000 30.0000 -15.0000 -15.0000 1 0 2 30.0000 30.0000 -15.0000 15.0000 1 0 2 30.0000 -30.0000 15.0000 15.0000 1 0 2 -30.0000 -30.0000 15.0000 -15.0000 1 0]' wing = Airfoil(); [p,e,t]=initmesh(wing,'hmax',2); pdemesh(p,e,t)

  9. function r = rvect(p,e,gN) L1=[31,13,30]; %normal u =4 L2=[4,29,12,28,11,27,10,26,2]; % u=15 L3=[25,9,24]; %normal u =4 L4=[1,19,5,20,6,21,7,22,8,23,2]; %normal u =0 np = size(p,2); ne = size(e,2); r = zeros(np,1); for E = 1:ne loc2glb = e(1:2,E); x = p(1,loc2glb); y = p(2,loc2glb); len = sqrt((x(1)-x(2))ˆ2+(y(1)-y(2))ˆ2); xc = mean(x); yc = mean(y); tmp = gN(xc,yc); rK = tmp*[1; 1]*len/2; r(loc2glb) = r(loc2glb) + rK; end

More Related